
Godel’s First Incompleteness 
Theorem
An attempt to explain parts of a simplified proof of Godel’s First 
Incompleteness Theorem



Open Question: Can we ever know everything?

Godel’s First Incompleteness Theorem







Terminologies: Godel’s First Incompleteness Theorem

1.Formal System

2.Completeness

3.Consistency

4.Decidability (more involved in 2nd Inco. Thm. and Godel’s other thms)

: e.g., Euclidean Geometry (f), ZFC, Q

: all statements or their negation are provable within the system

: no contradiction



ONLY consistent formal systems

Principle of Explosion (not good): If a formal system is inconsistent with one 

example of contradiction, everything (statements and their negations) would be 

provable. 



Godel’s First Incompleteness Theorem

(More Precise) Statement: Any consistent formal system F within which a certain 

amount of elementary arithmetic can be carried out is incomplete; 

i.e., there are statements of the language of F which can neither be proved nor 

disproved in F.



Preliminaries: Concepts and Lemmas

1. Ω-consistency/1-consistency (Godel’s formalizations of “consistency”):

- Ω-consistency is natural consistency; 1-consistency is restricted Ω-

consistency applied only to certain formulas. Godel’s F is at least 1-

consistent.

2. Representability:

- Strongly Representable (S.R)/Weakly Representable (W.R)

3. Godel Numbering: Formal Language as Arithmetics

4. Diagonalization Lemma/“Self-Referencing”



Preliminaries: Godel Numbering

Expressing the 12 necessary symbols in a basic formal system F

- We use these symbols to express axioms, construct proofs, and talk about statements themselves



Preliminaries: Diagonalization Lemma

Statement: Let A(x) be an arbitrary formula of the language of F with only one free variable, then a 

sentence D can be mechanically constructed such that:



Result of the Thm: 



Proof: 



Proof: sub(a,b,c), a Godel Number



Proof: sub(y,y,17) and sub(n,n,17)



Proof: Is the sentence G provable?

Assume G is provable, some sequence of formula exists that proves that formula 

with Godel # sub(n,n,17), but that is the opposite of G, meaning both G and neg(G). 

By consistency, this is a contradiction, so G is unprovable.  

Although G is unprovable, it is true: G says G is unprovable, but this is the 

conclusion we just reached above. 

So, we have something that’s true and unprovable in F…..
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