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Introduction

You might have noticed that a common way to understand mathematical
objects is to think about functions between them. For example,

(i) Group Theory has group Homomorphisms

(ii) Topology explores Homeomorphisms

(iii) Differential Geometry inspects Diffeomorphisms

Each one of these objects makes up a star in the galaxy of math but how
are these stars connected? This is the question that universal properties
seek to answer. Universal properties endow us with a few powerful facts and
abilities,

(i) Expose what is a feature of a map vs what is a feature of an object.

(ii) Allow generalization of certain proofs

(iii) Sweeps away messy unnecessary details of proofs

Prerequisites

Prior to our exploration of universal properties we must define an important
preliminary concept. Let ∼ be an equivalence relation defined on the set A.
We define the quotient set of A as follows,

A/ ∼ := { [a] : a ∈ A}

In plain words, the Quotient set of A is the set of all equivalence classes of
A under the equivalence relation ∼.

Using the Quotient set we define the following function,

π : A −→ A/ ∼ π(a) = [a]
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π is called the natural projection. π offers a natural and canonical way to
map a set onto its quotient set under an equivalence relation.

Let’s explore the natural projection with an example. Consider the set Z
and define a ∼ b if and only if 2|(b−a). The first question we ask ourselves is
what does the quotient set of Z look like under ∼. It doesn’t take much effort
to realize the equivalence relation partitions the integers into two equivalence
classes, namely the even integers and the odd ones.

Z/ ∼= {[2], [1]}

Turning our attention to figure 1 we can now understand why π is called the
natural projection. The function π projects the integers into two classes, it
quite literally collapses the integers into a smaller space.

Figure 1: Natural projection of Z using ∼ as defined above

Equipped with the knowledge of a natural projection we can meet our first
universal property.

The Universal Property of Quotients

Let A be a set equipped with an equivalence relation ∼ and consider a func-
tion g : A −→ B. When g satisfies the property that for all a, a′ ∈ A,

a ∼ a′ ⇒ g(a) = g(a′)

then there exists f : A/ ∼−→ B such that the diagram in figure 2 commutes,
that is g = f ◦ π with f([a]) = g(a).
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Figure 2

A natural question is what is so universal about this property? The key
feature of the theorem that introduces the idea of universal is that the only
restriction we’ve put on A and B is that they’re sets. We didn’t specify them
as groups, rings, modules, or manifolds. This approach to studying mathe-
matical objects helps us distill when something is universal to sets or just a
result of a special kind of set. Another important task is to prove that the
Universal Property of Quotients is even true, which we will now do.

We know that π exists since we have an equivalence relation defined over
A. Therefore, to prove the Universal Property of Quotients we need to show
that f is well defined, that is f is a function, and that g = f ◦ π.

Proof

Let us first show that f is well defined. Consider [a] = [b] then a ∼ b
and by assumption we conclude,

f([a]) = g(a) = g(b) = f([b])

thus f is a well defined function. Now let a ∈ A,

f ◦ π(a) = f(π(a)) = f([a]) = f(a)

Therefore, g = f◦π ■
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Example

Define the following function g : Z −→ {0, 1},

g(a) = the remainder of a when divided by 2

Now consider the equivalence relation a ∼ b if and only if 2|(b−a). Is there a
function f such that g = f ◦ π? The Universal Property of Quotients makes
this question nearly trivial. All we have to check is the following: does g
satisfies the property that for all a, a′ ∈ Z,

a ∼ a′ ⇒ g(a) = g(a′)

Clearly, the answer is yes and thus by the Universal Property of Quotients
we know there exists a function

f : Z/ ∼−→ {0, 1} with f([1]) = 1 and f([0]) = 0

such that the diagram in figure 3 commutes.

Figure 3

You can generate countless examples using the former idea. Now imagine
if we didn’t know of the Universal Property of Quotients, each one of these
examples might appear special or seem to suggest that there is something
unique about the sets. However, we now clearly understand that what is
special is in fact the way we map between the sets.

The Universal Property of Quotients is one of many universal properties
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in the galaxy. Which suggests there are far more to spot out in the night
sky. One of the most powerful universal properties goes by the name of the
canonical decomposition of functions and directly results in the isomorphism
theorems in the various disciplines of Abstract Algebra.

Further Ideas

What’s been shown in this document is brief peek at the galaxy. Universal
properties are in fact a part of a much more abstract theory called Category
Theory. For further exploration consider reading and exposition,

(i) Categories for the Working Mathematician by Saunders Mac Lane

(ii) Category Theory in Context by Emily Riehl
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