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1. Introduction

Origami, also known as paper folding, is the subject studying how to fold a piece
of flat paper (often a rectangle) into creative or lifelike motifs. In this paper, I
would like to discuss how mathematics intervenes modern origami. The connection
between these two subjects not only allowed math to shape origami from a childhood
toy into an art form, but, in turn, also let origami inspires new math studies as well
as applications in other scientific fields.

2. History of Origami and the Role Math Played

Mathematics’ impact is strongly reflected on the history of origami. When math
is introduced into the design process of it in 1900s, we see the complexity of the
artworks increased exponentially in that century. With only a hundred year’s time,
the subject of origami grew in scale and significance, became a serious art form that
worth studying. The sudden flourishment is achieved by math in general.

2.1. Early history of origami. Origami did not origin from a particular site or
time. Since paper was invented by Chinese in 105 CE and the word origami came
from Japanese ”ori (fold)” and ”kami (paper)” with solid evidence showing origami
existed in 1600s, we view China and Japan as where origami started from [12]. During
the years between 1600s and 1900s, origami functioned as childhood toy or for ritual
uses, and exploration was the main method to create new designs. It was until
the twentieth century did deliberate planning take place and people heavily pursue
complicated figures and aesthetic meanings.

2.2. Encounter of origami and math in the twentieth century. Mathemat-
ics was first connected to origami in the nineteenth century, when T. Sundara Row
published “Geometric exercises in paper folding” in 1983, showing how to construct
geometric shapes by origami in replacement of the traditional straightedge and com-
pass constructions. In the introduction of his book, Row discussed his approaches to
folding geometric figures and proofs as “These exercises do not require mathemati-
cal instruments [...] In paper-folding several important geometric processes can be
effected much more easily than with a pair of compasses and ruler, the only instru-
ments the use of which is sanctioned in Euclidean geometry.”[13] His book, originally
inspired by the kindergarten gift he received years earlier, drew the eyes of other
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Figure 1. Shimokobe Shusui, The folding of two origami cranes linked
together. 1797. [14]

mathematicians to participate in the study of origami. However, before mathemati-
cians made new conclusions on their own field with paper folding as a new tool, they
first reformed the world of origami.

The change of origami from a casual toy into a serious art form happened in
the twentieth century. It was led by several artists and mathematicians with their
innovation on the strategy of designing the works. One of the pioneer is Akira
Yoshizawa, who created the common language to describe the design in 1954. His
effort standardized the transcription of origami works, which made the duplication of
certain artworks achievable [5] [11]. He used two kinds of dotted lines to represent the
only two types of crease line: mountain fold and valley fold. Mountain fold represents
any crease folding downward, creating a mountain-like shape, and valley fold means
the opposite. Such representations allow origamists to communicate efficiently and
effectively with sketches, cheaper and easier than by the photos of actual papers.

Another preeminent origamist is Jun Maekawa, a mathematician who started the
first wave of origami revolution by using conscious design decisions instead of random
attempts in 1986. The complicated facial expressions and the fingers of his most
inspiring work, “Demon,” were the evidence of mathematical thinking interference.
The crease lines also revealed the thorough planning of the entire paper before the
folding process. Since then, math took over origami’s design of overall structures [3].
The devising of the paper was later fully taken over by mathematical algorithms in
1990s when Robert Lang published his computer program called TreeMaker [11].
Besides the general planning of paper and the structure created, the mimicry of

the texture of objects in origami works also built on mathematical studies. The
second wave of origami revolution, led by Satoshi Kamiya, incorporated the idea
of tessellation and created the new concept of crease patterning, known as origami
tessellation [3]. The direct impact by Kamiya is that new studies focusing specifically
on origami tessellation developed. Another inspiration is the idea to implement more
mathematics models into origami, in another word, to build on the past experts [10].
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Figure 2. Origami “Devil” by Jun Maekawa [2]

Origami transformed from a craft to an art form. By the end of the twentieth
century, mathematics used in computational origami actually became indispensable
in this subject, as the design process for the desired details of origami was too com-
putationally complicated [5]. Before we discuss how such result was accomplished,
we fist need to define origami properly so that it can be quantified in programming
languages.

3. Modern Definition of Origami

There are many branches of modern origami: modular, wet folding, crumpled, and
so on. To define origami in modern terms, we have to classify it by the technique it
used, because each type of origami is very distinct. Though there are more to explore
with 3-dimensional origami and the ones with curved creases, to keep this paper in
reasonable length and organized, we mainly discuss Euclid geometry, so we only talk
about one and the most popular branch of paper folding: flat origami.

Flat origami generally requires only one piece of square or rectangular shaped pa-
per, and construction process with no cuts, folding straight lines only. An additional
limitation for flat origami is that the finished result must be able to “be pressed in
a book without crumpling or adding new lines” [4]. To put this into more mathe-
matical words could be hard, because we cannot simply claim that each fold in flat
origami must be 180°(For example, the cranes). There are many scenarios that the
final model appears with volume, and the 180°is only valid with its base.

The origami artworks below are all in the class of flat origami. They have various
shapes and styles, but they fall in the restrictions of flat origami. To study them,
especially from the mathematical point of view, we often focus on their ”blueprint,”
that is, the crease lines on the flat paper with Yoshizawa’s notations. How significant
is math to origami? In the next section, we will discuss the design process of origami
works, and the crucial part of mathematics would be revealed.

I would also like to explain a few terms used in origami:
Mountain fold and Valley fold are the (only) two kinds of folds in origami, usually
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denoted by two different types of dotted lines. These lines are jointly called crease
lines.
Crease pattern is the layout of all the crease lines of an origami on an unfolded
paper, the blueprint of it.
Crease assignment refers to the action of assigning an unclassified crease line to
mountain or valley.
A Base of an origami artwork is a projection of the actual model onto a flat surface,
with each furcation as a separate flap.

4. Quantify Origami for Computer Simulation

4.1. Modern approaches: computational origami. As modern sophisticated
design of origami requires a well-planned crease pattern before the actual folding.
As origamists tried to incorporate computer programming into the computational
complicated calculation process, they first decided to study the crease pattern of
the folded works and establish the rules that the program has to follow, so that the
patterns created are feasible.

There are four rules that are frequently mentioned by nowadays origamists among
their attempts:

• If a crease pattern is flat-foldable, the crease pattern must be double-colorable.
• For the crease pattern of any flat origami, the difference between the mountain
folds and valley folds emanating from a single vertex interior of the paper is
always two. (Maekawa’s Theorem)

• A collection of creases meeting at a vertex are flat-foldable if and only if the
sum of the alternate angles around the vertex is π. (Kawasaki’s Theorem)[4]

• A sheet can never penetrate a fold.

Are the rules above sufficient to create a crease pattern? Kawasaki’s Theorem
succeeds in a single-vertex pattern, but the “only if” part failed the sufficiency when
there are multiple vertices on a crease pattern [1]. What is somehow disappointing
is that, after origamists studied ”what rules does the crease pattern has,” they failed
to distinguish whether a given crease pattern is flat-foldable in a timely manner. In
1996, Bern and Hayes published a proof claiming the determination of a given crease
pattern is flat-foldable is NP-complete [1]. The strategy to create large amount of
random crease patterns by computer then to justify and select the foldable ones was
stuck. The idea of creating a successful computer designer became questionable.
However, origamists did not stop their attempts to make computer their helper on
the complicated design process. From the newly discovered design technique, circle-
river packing, Lang developed the computer program TreeMaker, which can help
designers to create the crease pattern of the base.

4.2. Mechanism behind TreeMaker. TreeMaker is a computer program invented
by origamist Robert Lang in the 1900s. His main goal of this program is to explore the
mathematical theory of how to design a base out of his academical curiosity. As he
undated his program with faster and stronger algorithms and functions, TreeMaker
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Figure 3. The stick figure of “Scorpion” by Robert Lang. [3]

Figure 4. The crease pattern of “Scorpion” by TreeMaker [11]

became a powerful tool for the construction of the crease pattern for all kinds of
origami bases [11].

The circle-river packing technique is inspired by the concept of trees. Taking the
origami bases into general shapes, the tail of a cat or a finger of a demon can be
represented as a “branch.” If we think about this in graph theory, to get a nice and
sharp edge of length a with leaf vertex on the paper, we need to astringe the circular
area with radius a around that vertex together. In another word, we need a circle (or
a fraction of circle, if the vertex is close to the boundary of the paper) to create each
branch. From this approach, we change the problem of folding a tree from a piece
of paper to packing the circles that has radius of the length of the branches on that
paper [3]. TreeMaker aims to find the most efficient way to solve the circle packing
problem, that is, find the smallest paper to pack all of the circles. An example
by Lang is shown below. To create a scorpion, the user input the stick figure of
the design with expected length of each branch labeled. TreeMaker would output
the crease pattern for the base, and by adding more details to the folded base, the
designer can get a satisfying model.

TreeMaker helps the designing process because it can solve the origami bases that
are much more than what a person can solve by hand. What Lang viewed his



6 JIAYI WU

Figure 5. The base and actual adjustments of “Scorpion” by Robert
Lang [11]

program impressing is the combination of novelty with efficiency TreeMaker achieved
[11]. Given a stick figure, TreeMaker often provides the most efficient way of using
the paper, which sometimes turns out to be an entirely new structure in the origami
world. That being said, this computer program has some kind of “creativity,” helping
the innovations of origami as a whole.

5. Importance of Origami on Mathematics

Not all mathematicians care about how an art form is significantly supported by
the knowledge of math, but they do get excited if a system with new axioms is
created for mathematical proofs. In mainly the field of Euclid geometry, origami
inspired new models with its unique axioms, much stronger than the straightedge
and compass system.

I like to think about origami as a variation of straight-edge and compass, a more
advanced version: It is the boundary that acts as straight edge and T-square that
makes it powerful. Another difference in my observation is the fact that a compass
allows us to create a specific length with one fixed endpoint. However, paper-folding
allows us to move around the plane with both endpoints flexible. The folded part also
functions as a record of the distance and angle that the point and edge we moved.

The study of origami geometric constructions was led by the seven “axioms”
that are brought up starting from 1990s. At the First International Meeting of
Origami Science and Technology in 1989, Japanese mathematicians Humiaki Huzita
and Benedetto Scimemi published six distinct ways to create a crease by aligning
combinations points and lines, known as the Huzita axioms:

(1) Given two points p1 and p2, we can fold a line connecting them.
(2) Given two points p1 and p2, we can fold p1 onto p2.
(3) Given two lines l1 and l2, we can fold line l1 onto l2.
(4) Given a point p1 and a line l1, we can make a fold perpendicular to l1 passing

through the point p1.
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(5) Given two points p1 and p2 and a line l1, we can make a fold that places p1
onto l1 and passes through the point p2.

(6) Given two points p1 and p2 and two lines l1 and l2, we can make a fold that
places p1 onto l1 and place p2 onto l2. [6]

Not until 2002 did the seventh axiom is discovered by Koshiro Hatori:

Given a point p1 and two lines l1 and l2, we can make a fold perpendicular to l2
that places p1 onto l1.
Another story is that the French mathematician Jacques Justin published a paper

in 1989 with all of the seven axioms. Hence, these axioms are also called Huzita-
Justin axioms [6].

Proved by Lang in the 2000s, these axioms are the only unique folds that one
is able to make. Just like the story of Euclidean geometry, the axioms may not be
flawless in larger context, as further efforts into this study are needed. However, from
the starting point of Sundara Row and his observation that paper folding results in
stronger axioms than straightedge and compass, other mathematicians built on his
idea with acceptance of the axioms, resulting in astonishing outcomes. One of the
most accomplished result is by Robert Lang. Beside his TreeMaker which focuses on
the artistic aspect of origami, he also created a program called Reference Finder which
has more mathematical significance. By inputting the coordinates of the position of
a point on a one-by-one square and a single click, this on-line program can show
the steps to find that point by just folding the paper, with error less than 0.002 [8].
This program Incorporated all of the seven Huzita-Justin Axioms [9]. He also wrote
an article “Origami and Geometric Constructions” specifically focusing on how to
divide a unit-squared paper into n equal distanced folds [7].

According to Lang, geometric concepts are used in TreeMaker and some additional
algebra is used in Reference Finder. There are many discussions inspired by origami
in the mathematics field, which can be found here. http://mars.wne.edu/ thull/

origamimath.html

6. Origami’s Application in Other Scientific Disciplines

The new structures discovered by TreeMaker are not significant to origami artists.
In fact, the structures of origami are sometimes used by engineers in their own fields.
For instance, the space projects had utilized certain structures created by flat origami
to pact their large piece equipment into small cases, which can be fully expanded or
folded again with a simple, small-scaled action that requires little energy. [10]
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