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Abstract. The processes of human cognition are of great interest to both psychologists and
programmers working on systems of artificial intelligence. Despite extensive research into
the topic, many of the specifics of how people think and how the brain functions, on a
fundamental level, remain unknown. One of these fundamental functions is how the brain
handles the cognition of concepts. The handling of concepts is essential to both higher order
and automatic cognition done by the brain. Concepts and their cognition are involved in
learning concepts in math, identifying members of categories or groups (both category and
group theory are major fields of study themselves), to stereotypes, and just interacting with
the world from day to day. Prior research gave simple models for concepts related to the
theory of sets, a concept holding members that could be identified with it. Fuzzy set theory
was used to identify membership and work with prevalences of items. More recently, models
using vectors and linear transformations in Hilbert spaces have allowed for the inclusion of
context and concurrent concepts to be modeled as well. This research paper explores the
past of these models, new research and possible ways forward.

1. Introduction

The theory of concepts has been of interest to philosophers and psychologists for millennia
now. Socrates’ theory of ideas was that the world we live in is truly made up of ideas or
concepts, things that we perceive around us and how exactly we perceive them. So while we
live in a real world, the only things we can really interact with are the mental pictures we
have of the world around us. While our cognition of the world around us is so important,
psychology was largely a field of philosophy for most of history, and only recent developments
have provided empirical data with the addition of science. Now, the fields of computer
programming and specifically artificial intelligence have given rise to new interests in human
psychology and detailed mathematical models of the mind. One area of interest is that of
how the mind handles concepts, specifically how we process a concept and instances of a
concept that are perceived in life. One main theory of explanation is Prototype Theory,
that concepts are centered around a prototype, a perfect exemplar of the traits central to
being a member of a concept. Then other instances are compared to this prototype to give
a frame of reference for likelihoods, typicalities, etc. However, the work of prototype theory
is incomplete. Programming has made use of vector spaces and linear transformations for
computations, and quantum mechanics has begun to provide models for programs themselves
and other aspects of cognition.
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2. Prototype Theory

The initial theory that dominated early modeling of concepts was Prototype Theory.
Appearing in the work of Posner and Keele, 1968 and Rosch, Simpson and Miller, 1976,
the theory is based on the idea that a concept is centered around a prototype, some perfect
exemplar of the characteristics that define a concept. For instance the prototype for the
concept of dog could be a golden retriever or some not-entirely-real average of di↵erent dog
parts, e.g. the most common color, tail length, snout shape etc.

2.1. Definitions. We define a few variables necessary for understanding the formalization
of the model (from Osherson and Smith, 1981 [3]) . According to the theory, a concept can
be modeled as a quadruple, based on a set of instances of a concept defining the concept
itself. We give,
A quadruple hA, d, p, ci, where
A is a set of readily envisionable objects (real or imagined) called a conceptual domain
d a function from A⇥ A into the positive real numbers R+, the distance metric
p is the prototype of A
c is a function from c : A ! [0, 1] called the characteristic function; with conditions

1: hA, di is a metric space, so 8x 2 A, 8y 2 A

a: d(x, y) = 0 () x = y

b: d(x, y) = d(y, x)
c: d(x, y) + d(y, z) � d(x, z)

2: 8x 2 A, 8y 2 A

d(x, p)  d(y, p) =) c(y)  c(x)

The first condition simply sets up the metric space necessary for relevant calculations.
Then an instance of a concept is defined as a vector x made up of weights to relevant char-
acteristics. The second condition meanwhile establishes the function of the characteristic
function. When an instance of a concept is “close” to the prototype of the concept, mea-
sured by d, then it is more characteristic of the concept with c returning a higher value. So
the distance function measures similarity while the characteristic function measures exem-
plariness of the concept.

2.2. Example. This can be illustrated with the concept bird: hB, dbird, pbird, cbirdi. We
have then that B is the set of envisionable birds, e.g. a robin, sparrow, hawk or a pen-
guin. dbird returns as a function of two instances birds, a value of their similarity, say
dbird(robin, sparrow) = 1.5 while dbird(hawk, penguin) = 9.8. Then pbird is constructed or
taken as the bird with values closest to all other instances b 2 B (usually the average of such
values). Lastly, cbird could be calculated by

cbird(b) = 1� d(b, pbird)

maxbi2B(d(bi, pbird))

among other possible formulations (based on that of Osherson, Smith [3]). And according
to the same paper, such modeling matches empirical findings using ratings of typicality and
similarity between an instance and a concept or other instance.
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3. Fuzzy Set Theory

So the characteristic function measures the level of membership of a certain instance or
object to a concept. We can use this as a guideline for comparing and conjoining di↵erent
conceptual domains. This is very important because as people we usually do not consider just
one simple and isolated concept like “bird” or “dog” but rather a “red bird” or especially
something like “mathematical psychology” or any relevant connection to concepts across
various fields of study. The most relevant feature in the quadruple representing a concept is
the characteristic function, or how we evaluate these conceptual combinations [3].

3.1. Defintions. Since we are measuring inclusion in a set by the graded characteristic
function that returns a value in [0, 1], we have entered the realm of fuzzy set theory. Thus
we can consider the characteristic function under a few rules.

Given a conceptual domain D and its subsets A and B, 8x 2 D

1: cA\B(x) = min(cA(x), cB(x))
2: cA[B(x) = max(cA(x), cB(x))
3: cAc(x) = 1� cA(x)

3.2. Example. We take an example from Osherson and Smith [3]. Consider the domain A

of animals with subsets D of dogs and F of females. Then for some animal Rover, or r, we
suppose cD(r) = .85 and cF (r) = .10.

cD\F (r) = min(cD(r), cF (r))

= min(1, 0)

= 0

cD[F (r) = max(cD(r), cF (r))

= max(1, 0)

= 1

cDc(r) = 1� cD(r)

= 1� .85

= .15

cF c(r) = 1� cF (r)

= 1� .10

= .90

So far this system seems to work for the combination of concepts, but what about certain
cases.

4. Gaps in the Theory

So what might be wrong with this model. Ultimately the model breaks down with greater
development of conceptual combination. We demonstrate the problem with another example
from Osherson and Smith [3]. Let F be the conceptual domain of fruit, consider the subsets
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A of apples, S of striped fruit, and S \A of striped apples. To really consider this we truly
only need the intersection, being both striped and an apple.

Taking the depicted apples in the figure, we see consider the apple a. We can find cS\A(a) =
min(cS(a), cA(a)). However, the strange stripes on the apple clearly means that cA(a) is
quite low, certainly cA(a) < cS\A(a). But this contradicts the calculation of cS\A(a) =
min(cS(a), cA(a))  cA(a) [3]. So the object in question is more typical of the conjunction
“striped apple” than of either constituent “striped” or “apple”. This is exactly where this
theory falls apart. Specifically the fuzzy set theoretical modeling of prototype theory seems
to be inadequate for describing the complexity of combined concepts.

5. Hilbert Space Approach

Given the rise of quantum methods in artificial intelligence and in describing other aspects
of human cognition, it has been put forward that such methods may be able to describe the
cognition more accurately and completely than the combination of fuzzy set theory with
prototype theory. For this model we consider states of a concept instead of instances, which
collapse into other states under the influence of a context, with regards to the weights of
varying salient properties as described by Aerts and Gabora [1] [2].

5.1. Simple Definitions. For this model we will be concerned with: a concept S, its set of
states ⌃ and individual states p, q, r 2 ⌃, a set of contexts M or MS with specific contexts
e, f, g 2 M , and a set of properties L with a, b, c 2 L [1].

5.2. Hilbert Space Definition. A Hilbert space H is a complete inner-product space.
That is a metric space with an inner-product which is complete with regards to the norm
induced by the inner product. The inner product is a map h·|·i : H⇥H ! C such that

1: h�x+ y|zi = �hx|zi+ hy|zi
2: hy|xi = hx|yi
3: hx|xi � 0 i.e. hx|xi 2 R+

4: hx|xi = 0 () x = 0

We see that one of the simplest Hilbert spaces is indeed the vector space Cn, equipped
with the normal inner product hx|yi = P

xiyi. So now we have the necessary formulation
of the mathematical space in which we will operate.
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5.3. Quantum Understanding. We consider a ground state of a concept p̂, with respective
states, contexts, and properties
p1, p2, . . . , pn 2 ⌃
e1, e2, . . . , em 2 M

a1, a2, . . . , ak 2 L
Then we give two functions, µ to calculate the probability of a state p becoming q under
context e, and v giving the weight of a property to a particular state.
µ : ⌃⇥M ⇥ ⌃ ! [0, 1] given by µ(q, e, p)
v : ⌃⇥ L ! [0, 1] given by v(p, a) [1]
Now we consider a state p 2 ⌃. According to quantum mechanics this state can either be a
pure state or a density or mixed state. If the state is pure, we represent p by a unit vector
|xpi 2 Cn. If the state is mixed, p is represented by a self-adjoint linear operator ⇢p on Cn,
⇢p = ⇢

⇤
p the conjugate transpose, with Tr(⇢p) = 1.

A concept and each of its states also has relevant properties and weights that determine how
important that property is to ratings of typicality. To model these properties, say a, we use
orthogonal projection operators, that is a self-adjoint linear operator Pa such that P 2

a = Pa.
From quantum mechanics we have a way of calculating the weight of each property. That is
for property a 2 L : if p a pure state:

v(p, a) = hxp|Pa|xpi
And if p a density state, then:

v(p, a) = Tr(⇢pPa)

Finally, a context is generally a measurement in quantum mechanics, another self-adjoint
linear operator on Cn. For the purposes of this model, we break up the linear operator into
the spectral decomposition of orthogonal projection operators, that is we consider the most
basic forms of contexts. So then for conceptual states p, q 2 ⌃ and context e 2 M we define
the ways in which context e changes concept S from state p to state q. Again we need to
consider the two possible characterizations of p. If p a pure state, represented by the unit
vector |xpi 2 Cn, then:

|xqi = Pe|xpiphxp|Pe|xpi
such that the probability that the given change occurs is given by:

µ(q, e, p) = hxp|Pe|xpi
.

If p is a density state, represented by the orthogonal projection operator ⇢p, then:

⇢q =
Pe⇢pPe

Tr(⇢pPe)

such that the probability the change takes place is given by:

µ(q, e, p) = Tr(⇢pPe)
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5.4. Describing the Vectors. Finally we give a method for calculation. We know that any
vector space can be described by a set of vectors B = {|ui : |ui 2 Cn} that is an orthonormal
basis for the space. That is 8|uiinB,

1: hu|ui = 1
2: hu|wi = 0 () |ui 6= |wi
3: 9!↵1, . . . ,↵n 2 C such that |ui = P

|ui2B ↵u|ui
Furthermore we use the orthogonality of the basis to establish that hu|xi = hu|P|wi2B aw|wi =P
|wi2B ↵whu|wi = ↵u. So,

|xi =
X

|ui2B

|uihu|xi

Following that

X

|ui2B

|uihu| = 1

.
Taking the orthogonal projector Pu that projects onto the unit vector |ui by Pu|xi = ↵u|ui,

we see that Pu = |uihu|. Thus,

hx|Pu|xi = hx|uihu|xi = ↵u↵u = |↵u|2

This presents a use for the coe�cients in the linear combination or superposition of the
vector |xi in an orthonormal basis B. Indeed, considering the orthogonal projection of a
density operator ⇢p onto the unit vector |xpi, we can see that Tr(⇢pPu) = |↵u|2 [2]. These
results, the coe�cients in such a superposition, are the square root of the probability that a
given state changes under influence of a context u.

6. Hilbert Space Results

In order to establish empirical results from the model, we need some more information
about how to construct these vectors and linear operators and especially on how to calculate
the weights and frequencies of specific states and exemplars of a given context. We use an
ordering device to determine the strength of a given context. Indeed, we say that a context e
is stronger than a context f if the eigenstates of f are contained in the set of eigenstates of e
[2]. In other words, the strength is measured by the number of contexts which activate over
the same conceptual states. It is hypothesized in the model that the frequency estimates
reflect the presence of contexts that are stronger than those explicitly stated and that the
distribution of such contexts reflects the frequencies measured in the experiment [2]. These
frequencies as collected by the study are given in the table below.
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Figure 1 [1]

Such contexts that are stronger than those explicitly stated in the study are counted and
used for calculation in the next table.

Figure 2 [2]

6.1. Construction of Conceptual State Vectors in the Space. So then how do we
construct this Hilbert space. From Aerts and Gabora [2], first let it be of dimension 1400,
that is Cn, n = 1400. Then each basic context is represented by a member of the orthonormal
basis B of Cn by the projector hu|ui such that |ui 2 B. We can write the ground state p̂ of
the concept “pet”, which is represented as a unit vector |xp̂i, as the linear combination of
these basic contexts.

|xp̂i =
X

u2B

↵|ui where ↵u = hu|xp̂i
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From before we know that |↵u|2 is the probability that the concept pet changes to base
state u. Given that each u is a base state in Cn, n = 1400, we can see the probability of
each base state under u is equivalent and 8u 2 B, |↵u|2 = 1

1400 . Thus, we can rewrite |xp̂i as

|xp̂i =
X

u2B

|uip
1400

So now, we want to compute the state of “pet” that the ground state changes into under
the context e1, represented by the projection operator Pe1 =

P
u2E1

|uihu|. By definition we
have,

|xp1i =
Pe1 |xp̂iphxp̂|Pe1 |xp̂i

Pe1 |xp̂i =
X

u2E1

|uihu|xp̂i =
X

u2E1

1p
1400

|ui

and

hxp̂|Pe1 |xp̂i =
X

u2E1

hxp̂|uihu|xp̂i =
X

u2e1

|hxp̂|ui|2 =
X

u2E1

1

1400
=

303

1400

Giving

|xp1i =
X

u2E1

1p
303

|ui

6.2. Calculating Frequencies Under E↵ect of Relevant Contexts. Finally, we take
an example of finding the frequency or typicality rating for each exemplar under a given
context. We calculate the likelihood that from state p1 “the pet chews a bone” (resultant
from context e1) the state collapses into state p14, “the pet is a cat”. So

µ(p14, e14, p1) = hxp1 |Pe14|xp1i
And we have that,

hxp1 |Pe14|xp1i =
X

u2E14

hxp1 |uihu|xp1i =
X

u2E14

X

v2E1

X

w2E1

1

303
hv|uihu|wi

=
X

u2E1\E14

1

303
=

75

303
= 0.25

And .25 matches exactly the corresponding state in Figure 1 [2].
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7. What This Means

Clearly the Prototype theoretic approach alongside Fuzzy Set Theory can not handle
the complexities of real world applications. This approach was very simplistic and focused
almost solely on some average instance of a concept and upon a function for assigning
membership to a concept. This results in both a lack of flexibility over complexities in
a concept and di�culty in computation. However, the quantum formulation of concepts
as states, which collapse into others under the influence of contexts, gives much needed
capability to any such model of cognitive function. Both seem very similar, but there is a
clear breadth and depth to calculations that is supported by this quantum model. Indeed,
the central element of the quantum formulation is the contexts that act upon the states
of a concept S. This fundamentally changes the way we model, not only mathematically
but psychologically, the cognition of concepts. Prototype theory presupposes that a concept
is centered around a prototype, with other surrounding instances readily available. This
seems unreasonable, things generally do not all pop into your head at once. Indeed, after
summoning a concept or given context, usually only one or maybe two instances of a concept
come to mind. This fits much better with the quantum formulation. Presented a concept,
and a context, the concept collapses into a certain state. Thus, we only need to store the
memories already stored in our brain, and the method by which a context e↵ects any state
of concept (not even the contexts themselves). This would be called the schema by which
the concepts are handled in cognition, the structure of ideas and memories that lends itself
to salient thoughts and judgments. Furthermore, the quantum model lends itself perfectly
to conceptual combination through the use of tensor products (not discussed here). Overall,
we have seen a more complete and resilient model of conceptual cognition, better handled
to empirical results and calculation.

8. Questions and Future Research

One thing that I had not touched on was the true combination of concepts in the quantum
model using the tensor product. I indeed have material on this approach and would look
forward to expanding on one of the prime reasons for progressing to the quantum model
in the future. Based on peer feedback, the method of cognitive modeling seems at first
glance to be a more or less complex. I hope to have addressed this issue in the above
paper, realizing that while there is a higher number of definitions and variables to track,
the mathematics are fairly simple, and easy to use. These methods are especially easy to to
program, translating directly into existing methods. This brings us to another key part of the
feedback received upon presentation. The potential applications for this model, and models
like this in general are indeed vast. They range from easy applications to recognition systems
or other models of intelligence that would mimic human cognition, to outright psychology and
better understanding of how the brain works. One area in specific that stands out to me is
understanding the concept of self in human cognition. Many Eastern philosophies, and even
of schools modern psychology either expound or admit that much of what we call the self is
an illusion of thought and cognition, a concept constantly referred back to when interpreting
the world “outside”. This idea of the self being a pure concept, clearly representative of some
real world entity, adheres to the model. Changing in di↵erent contexts, when goal striving
and needing confidence, after failures, or in work vs around friends. Trying to model the self
with these ideas would be a vastly interesting topic worthy of future research.
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