Knitting and Crochet in Mathematics

By Andy Fisher and Rachel Vasan

What are we doing today?

- 1. Introduction
 - a. What is knitting?
 - b. What is crochet?
 - c. How are they different?
- 2. Basic Mathematics
 - a. How does math relate to knitting, crochet, and their differences in a basic sense?
- 3. Connections between knitting/crochet and math
 - a. Crochet and fractals
 - b. Crochet and hyperbolic space
 - c. Knitting and topology
 - d. Machine knitting
- 4. Knitted/Crocheted mathematical objects

Introduction: What is Knitting?

- 2 Needles
- Many Types of Stitches
- Stockinette Stitch
 - Right and Wrong Side
- Many "active/live" Stitches
- Yarn goes in Row

Introduction: What is crochet?

- Uses yarn and a hook
- Lots of variation in stitches:
 - Single crochet
 - Half-double crochet
 - Double crochet
 - Triple crochet
 - Double Triple crochet
- One "active stitch" at a time
- Stitches are looped top to bottom and side to side

Visual: how are knit/crochet stitches constructed differently?

https://youtu.be/U1bk4ZI0Qvc?si=CuhxRp7A7FKI_4Ba&t=76

https://youtu.be/ElmnSsCadK8?si=Vi6RcjiKfGI0Cdjw&t=93 (1:48-1:56)

Other differences & Basic Math Principles

- Yarn usage
 - Crochet Uses More
- Size
 - Crochet is Larger
- Time
- Counting Stitches
- Gauge Swatching
- Increases and Decreases
- Scaling Patterns

Fractals

- **Fractal** = a never-ending pattern; infinitely complex patterns that are self-similar across different scales
 - If you "zoom in", the image you see will look essentially the same

Fractal Crochet

• Fractal Crochet = Using crochet to model fractals; developing crochet patterns using the concept of fractals

Fractal Crochet - How do you do it?

- In a general sense, you can use the concept of fractals to create a crochet pattern by repeating the same set of stitches over and over again
- Example: Sierpinski Triangle

Hyperbolic Space - What is it?

- Hyperbolic Space = Non-Euclidean space
- Euclidean ("Normal") Space = Space that satisfies Euclid's Parallel Postulate
 - In Euclidean space, if we are given some line *l*, and some point P, there is a unique line say *t* such that *t* passes through P and is parallel to *l*
- Properties of hyperbolic planes
 - Every point on a hyperbolic plane is a saddle point
 - Hyperbolic planes have negative Gaussian curvature

Curvature and Crochet

- Crocheting a flat circle (zero curvature)
 - Linearly increasing stitches in each round
- Crocheting a sphere (pos. curvature)
 - Stitches increase at a slower rate per row
 - Crocheting a
 hyperbolic
 pseudosphere (neg.
 curvature)
 - Stitches increase exponentially per row (hyperbolic crochet)

Crochet Curvature and Stitches per Row

Hyperbolic Crochet

• Hyperbolic Crochet = using crochet to model hyperbolic space; creating crochet art that mimics hyperbolic space

Some Beautiful Hyperbolic Crochet Art by Gabriele Meyer

Crochet Coral Reef by Christine and Margaret Wertheim

Knitting and Topology

- Intro to Topology
 - Surface connected discs/rectangles
 - Knit Rectangles and Connect them
 - Not Simply Connected
- Start With Shape then Generate Pattern
- ²/₃ stitches * rows
 - Wider than they are tall

Seifert Surfaces

Continued

- Can be computer generated
- Lie Groups, Homeomorphisms
- Geometric Information
 - Add Metric
- Negatives
 - Front and Back

Machine Knitting and the Analytic Engine

- Quick History
- How does a knitting machine work?
 - Flatbed
- https://youtu.be/AwFmx2xWR7w?si=9ijc_k2TGDK_Wzxi&t=33
- https://youtu.be/xYzK15yVjXw?si=VA1-zCDNLFHHtD4e&t=316

Machine Knitting and the Analytic Engine

- Lace Knitting
 - Manually Move Stitches
- How does the card work
- First Machine to Use Punch Cards to Automate Instructions
- https://youtu.be/7KFJ-zas4i4?si=lgLlBvSLTm5rU6gu&t=40?

Machine Knitting and the Analytic Engine

- Analytic Engine
 - Charles Babbage
 - Ada Lovelace
 - First Computer
 - Started as a Difference Engine
 - Perform Calculations

Knitting as Coding

- Similarities
 - Loops
 - Patterns
 - Symbols
 - \circ Testing
- Programs Invented for Hand-Knitting
 - KnitML
 - KEL

Knitting as Coding

Begin Crown Decreases:

Rnd 1: Sl last 2 sts of rnd onto cn, hold back, sl m to RH ndl, *(k2; p2tog from cn, k1), (sl 2 to cn, hold front, p2tog; k2 from cn), p2, (MB, p1) 2x, MB, p2, sl 2 sts to cn, hold back; rep from * 3 times more, (k2; p2tog from cn, k1), (sl 2 to cn, hold front, p2tog; k2 from cn), p2, (MB, p1) 2x, MB, p2 – 80 sts.

Cable Chart pattern repeat

Marker placement, identifies beginning of round

Symmetries in Knitting

Fun Things

- Dr. Hinke Osinga
 - University of Bristol
 - Started Knitting at 7
- Math as Tool for Knitters
- Crochet and Knitting to Visualize Mathematical Objects
 - Lorenz Manifold

Fun Mathy Objects

More Fun Mathy Objects

Even More Fun Mathy Objects

