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Abstract

Cantor’s insistence on his Continuum Hypothesis, and the interest in it of many
others largely fueled the creation of set theory. We look at how the Continuum
Hypothesis developed, defining and exploring the mathematics around its creation,
and the math developed in its wake. The end result of this particular journey is
a possibly unsatisfying independence, but the creations in the pursuit of this are
essentially foundational to higher math today.

1. Introduction

“Naive set theory,” an idea of being able to have collections of mathematical objects
without rigorously establishing any axioms that can be used, has been employed essentially
since the beginnings of mathematics. Aristotle (384–322 BCE) is an early example of
someone using similar ideas to those that we now use regularly in set theory, in his work
on logic.

Naturally, even though we take the ideas developed by many mathematicians over
many years for granted today, we can ask how these might have been discovered or
invented originally. Although focusing on the breadth of the history of naive set theory
would be a ridiculous task, spanning thousands of years, we can narrow down to the
creation of more rigorous and developed set theory. And we find at the heart of this
development to be one recurring and unique problem that fueled many discoveries and
developments behind axiomatic set theory: the Continuum Hypothesis. At its simplest,
the Continuum Hypothesis is the question of whether there could be a set with cardinality
strictly between the set of integers and set of real numbers.

Georg Cantor is credited with the creation of this hypothesis, and so naturally he is
mainly who we’ll focus on in a discussion of it, but we find that Cantor’s quest to prove
this idea that he thought was so apparently true is one that takes his whole life, and
multiple other mathematicians.

In the pursuit of making a linear narrative out of this journey, we begin with a discus-
sion of Cantor’s early work to explore how his ideas behind the Continuum Hypothesis
were present for almost all of his career, and a surprisingly linear line of motivations for
working on topics can be traced throughout his career. Of course, this discussion will be
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a simplified overview of Cantor’s work, skipping over many results in favor of ones that
contribute more readily to later ideas.

Then we have an overview of Cantor’s establishment of set theory, again largely tailored
around his statement and pursuit of the Continuum Hypothesis. Although he spent
the rest of his career trying to prove the Continuum Hypothesis, he never did, and so
from there we move on to developments of set theory after Cantor, which are again
surprisingly motivated largely by the Continuum Hypothesis. A large element of this is
the axiomatization of set theory, which is still used today, so we spend some time on this
particularly.

Finally, we discuss the final results on the Continuum Hypothesis largely by Gödel and
Cohen, proving finally that the Continuum Hypothesis is simply something that can be
chosen to be true or false (within the current widely-accepted framework of mathematics).
The actual proofs here are intense and require very specific high-level math, so this section
will be the least-focused on the actual mathematics behind it, and more focused on the
history behind these developments and the changes in overall mathematics brought on by
them.

Throughout all of this, I hope to paint a broad view of how history influenced the
math we take for granted today, and put these ideas that we might use interchangeably
into a chronological order that gives surprising insight into each of their results. The
mathematics that we have at any point is fundamentally human, and nowhere is this
more apparent than in the history of how it was discovered throughout time: the discourse
between people that creates conclusions built off of other mathematicians, or somehow
creates new ones out of thin air by an especially creative thought. Without this human
aspect of math, we would have none of what we do today.

2. Georg Cantor

Georg Cantor (1845–1918) was a German-Russian mathematician. He’s known now for
his set theory, which is an important topic in a discussion on the Continuum Hypothesis,
but we should instead start with the beginning of his math career, since there end up being
many parallels to later, and a fascinating progression that seemingly leads inevitably to
the Continuum Hypothesis.

At the beginning of his research in math, he worked largely with number theory and
analysis, making a couple of contributions to the fields. It wasn’t that he would truly be
set down the path of set theory until a colleague, Edward Heine (1821–1881) convinced
him to join him on a functional analysis problem he’d had difficulty with.
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2.1 Cantor’s early analysis work

2.1.1 Uniqueness of Trigonometric Representations

The big question that he had been set upon by Heine was for any function that could
be represented by a trigonometric series, whether that representation had to be unique.
Heine had already proved uniqueness of trigonometric representation true for continuous
functions of the form

f(x) =
1

2
a0 +

∑
(an sin(nx) + bn cos(nx))

only when the series is uniformly convergent. But continuity and uniform convergence
were restrictive conditions, so many others had been working at expanding these ideas
into more general conditions.

In his proof of more general uniqueness, discovered in 1870, just a few months after
being given the problem, Cantor first considered taking two trigonometric representations
of the same function. If he subtracted these, giving a trigonometric representation equal
to 0, he would just have to show that each term of this series would be forced to be 0, and
thus the original “different” representations must actually be the same. He used this idea
and other analysis work to show that this must be true, and published this uniqueness
theorem.

The proof he discovered here generalized Heine’s result since the only requirement was
that the series was convergent for every value of x. But Cantor wasn’t satisfied with this,
and continued over the next couple of years working at generalizing it even further, first
with series where there was a finite list of values where the series didn’t need to converge
(finite exceptional sets), and then naturally he began to consider the possibility of infinite
exceptional sets.

To this end, Cantor worked at a more rigorous definition of the real numbers, starting
with rationals, and creating irrationals from limits of convergent sequences of rationals,
thus considering them as limit points of sets of rationals. He was with this able to build
a definitive connection between these numerical values and the corresponding points on
the real line, which led to his idea of the “point set,” which would become the basis of his
defining work. Although, at this point, it wasn’t truly defined, and was instead employed
in defining limit points, used to create an idea of derived sets that would also become
integral to later developments.

2.1.2 Derived Sets as a Stepping Stone

Cantor defined a process of taking such a “set of points,” P , and considering its set of
limit points, P ′. From here, one could continue this process any finite amount of times to
find P (v) for some natural number v.

Cantor was able to use these to show that there were infinite sets P where P (v) had
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only a finite number of points, and therefore P (v+1) didn’t exist. These were termed
“derived sets of the first species,” and these largely satisfied Cantor’s desire for infinite
exceptional sets for the uniqueness theorem, since he was able to show that uniqueness
held when the set of exceptional points was any of these derived sets of first species.

But although Cantor’s work on this uniqueness problem had been resolved to his liking,
these new ideas, originally developed to prove this, seemed to become also important to
him, as he developed them further.

In an important step toward his many ideas on the nature of infinity, Cantor decided
to extend this process of deriving sets past a finite end. He considered sets P where P (v)

existed for every finite v, so he defined ∞ to be the first number past all finite numbers, and
defined sets where P (∞) still existed to be “derived sets of the second species.” This step of
generalizing a process past finite ends into the realm of infinite ideas would fundamentally
characterize many of his later important discoveries, including the Continuum Hypothesis,
and in fact he would later consider his work on the infinite to be an extension of these
derived sets.

2.2 Uncountability of the Set of Real Numbers

Richard Dedekind (1831–1916) was another German mathematician who was often in
correspondence with Cantor. At one point after Cantor’s development of derived sets,
Dedekind criticized the idea, since if you take the set of rationals, the derived set would
be real numbers, but any more deriving would just give the real numbers again.

Instead of listening to this criticism, Cantor instead continued down the path his
work had sent him, and soon began to consider whether there might be a correspondence
between the set of integers and the set of real numbers.

Soon after the letter to Dedekind asking about the relationship between integers and
reals, he discovered that it was impossible to enumerate the real numbers with integers.
Cantor’s proof of the uncountability of the real numbers is a well-known result now, and
often associated with his diagonalization argument. Interestingly, though, this was not
the first proof Cantor developed to show this result, which instead largely used the ideas
behind his derived sets:

Proof. Cantor assumed for contradiction that the set of real numbers was countable, in
other words, that it was possible to list all real numbers as ω1, ω2, ω3, . . . without leaving
any out. Then he let α and β be any real numbers with α < β, and could use these to
show that there was at least one real number γ that wasn’t included in the original list.
Since this list claimed to enumerate every real number, this contradiction would prove
that it wasn’t possible for them to be enumerated in the first place.

To this end, he considered a process which was very similar to his derived set process.
He would take the open interval (α, β) and find the first real numbers in the list just
inside of this interval, α′ and β′. Then he could do the same with (α′, β′), continuing on
until some (α(v), β(v)).
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Then if this process was finite, there was only one element of the list left within
(α(v), β(v)). So since there would still be more real numbers in the interval for any non-
equal real numbers, if he took γ as any other real number in that interval, the proof was
done.

So he considered the case of the process being infinite. The first subcase here would be
if α(∞) < β(∞). Then very similarly to the last case, there must be another real number in
(α(∞), β(∞)), so taking γ as any of these satifies the proof. In the last case, if α(∞) = β(∞),
Cantor was able to show that γ = α(∞) = β(∞) was the necessary number not included in
the list, since for sufficiently large v, γ /∈ (α(v), β(v)), which made this case impossible in
the first place.

Then in every case, it was impossible for ω1, ω2, . . . to list every real number, so the
real numbers could not be countable.

Cantor would work at streamlining this proof, perhaps his most popular, for many
years, with another version using an idea of topological density, and another using the
diagonalization argument. Cantor seems to have been fascinated by this result, and other
ideas of infinity, since he decided to devote much of the rest of his career to ideas of the
infinite. In order to do this, though, he realized he first needed to develop a more rigorous
theory behind his “sets.”

2.3 Cantorian Set Theory

From the first sentence of a later text on set theory called the Beitrage, Cantor defined
his sets: “By a ‘set’ we mean any collection M into a whole of definite, distinct objects m
(which are called the elements of M) of our perception or of our thought.”

It was clear from this that Cantor realized he needed to essentially start from scratch,
in order to develop the tools that would be necessary to more rigorously discover ideas
about the infinite. Although today this effort would still be considered naive set theory,
this was a large step forward, as he first tried to define a set, and then built out the
rest of the results of the book from that, which would largely mirror the more rigorous
axiomatization prompted later.

One of the new concepts developed by Cantor in the realm of the infinite built off of
the idea of ordinal numbers and cardinal numbers. This is something we don’t often have
to think about, since finite natural numbers implicitly play both roles at the same time.
Ordinal numbers are used to indicate the positioning or order of the numbers, or whatever
they are representing. Cardinal numbers are used to indicate the size or cardinality of
a set. Cantor would soon discover that cardinal numbers and ordinal numbers diverged
when he began considering numbers representing infinities, which he called transfinite
numbers.
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2.3.1 Transfinite Ordinals

Cantor first considers the natural numbers, and notes how this set consists of repeated
addition of units, which he calls the first principle of generation. The process by which
Cantor realizes transfinite numbers is one that we’ve seen multiple times here: he gener-
alizes this process further into the infinite. To get the first transfinite ordinal, ω, consider
the first number after the entire set of natural numbers.

Then he reasons it would make sense to consider the first number after this, ω+1. In
terms of ordinal numbers, this is perfectly reasonable, but if considering cardinality, this
is exactly the reason we need the distinction in the transfinite world.

If we consider as Cantor does any ordinal number to be a set containing every pre-
vious ordinal number, then we can think of ω as {0, 1, 2, . . . }. Then ω + 1 would be
{0, 1, 2, . . . , 1}. This is reasonable and distinct in the realm of ordinals, but if we con-
sider the cardinality of ω + 1, we know we can rearrange this set so that we’re instead
considering {0, 1, 1, 2, . . . }, which must have the same cardinality as the natural numbers.

Continuing in the idea of being ordinals, we can find ω + 2, ω + 3, . . . , ω + ω = ω ·
2, . . . , ω · ω, and so on.

The idea of taking a succession of ordinals which technically has no end, and then
simply “jumping ahead” to the first ordinal after all of those is what Cantor called the
second principle of generation. Then you can use any combination of these two principles
of generation starting with ω to reach any transfinite ordinal number.

2.3.2 The Continuum Hypothesis

Naturally, Cantor began to wonder about the size of the set of transfinite numbers
compared to the set of natural numbers.

He first defined the collection of all finite whole numbers to be the first number class
(I). Then he defines the second number class (II) as the collection of all transfinite ordinals
formed by the two principles of generation, starting with ω.

In a process similar to his uncountability proof of reals, he was able to prove that the
cardinality of (I) was strictly less than that of (II), and furthermore that there was no
cardinality between these sets, that (II) had the very next cardinality higher than (I). He
saw the connections between this and his previous work, and decided that it was likely
that (I) corresponded to natural numbers and (II) corresponded to real numbers, so that
there was no cardinality between the cardinalities of the natural numbers and
real numbers.

This hypothesis was the first, though not fully realized yet, statement of the Continuum
Hypothesis. He thought that it would come naturally that there was a correspondence
between these classes with N and R, and made many claims about how he would soon
prove this conclusively. Cantor throughout his life would be certain that there could be
no set of size strictly between that of N and R, and almost all of the rest of his career
was dedicated to building more tools trying to prove this statement.
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2.3.3 Transfinite Cardinals

The next important idea Cantor built, also attempting to work at the Continuum
Hypothesis, was transfinite cardinals, in opposition to transfinite ordinals.

One of his first definitions of cardinality is that two sets have the same cardinality if
there is a one-to-one correspondence between them.

So any finite set has a finite cardinality, and so he considers the first transfinite cardinal
number to be the cardinality of the set of all finite cardinal numbers, called ℵ0. As
discussed above, many transfinite ordinals would have the same cardinality, and we find
that

|ω| = |ω + 1| = · · · = |ω · 2| = · · · = ℵ0.

So naturally the next question would be how to build higher cardinal numbers after
ℵ0. Cantor proved that if you took a cardinal to the power of 2, it would always be strictly
larger than the cardinal, i.e. 2ℵn > ℵn.

Cardinals were useful in more simply stating his previous realizations on the topic,
so he discovered that the cardinality of the class of countable transfinite ordinal num-
bers, (II), must be the very next cardinal number after ℵ0, called ℵ1. He was also able
to show that the cardinality of the continuum is 2ℵ0 , which was another way of seeing
uncountability of R, since he had already shown that 2ℵ0 must be strictly larger than ℵ0.

Using these ideas of transfinite cardinal numbers, we’re able to state the Continuum
Hypothesis in a much more succinct way:

2ℵ0 = ℵ1.

This is the statement that Cantor spent his life trying to definitively prove, convinced
for the rest of his career that the statement was true but a proof eluded him. He never was
able to make a definitive statement on the Continuum Hypothesis. Georg Cantor died in
1918 never knowing what would eventually be discovered about his enduring hypothesis.

3. Popularization and Paradoxes

If Cantor was the only one interested in this problem, his death would have been the
end of the story, and we never would have discovered the truths behind the Continuum
Hypothesis. Luckily the problem was picked up by fellow German mathematician David
Hilbert (1862–1943), who was a proponent of Cantor’s set theory and transfinite numbers.
Hilbert published a list of 23 unsolved problems in math in 1900 that would have powerful
ramifications in mathematics if solved, and as the first problem Hilbert decided to put the
Continuum Hypothesis. This list was very popular, and incited many mathematicians to
work on these problems in an effort to develop math further, and as the first problem on
the list, the Continuum Hypothesis got much more exposure than it had had before.

Hilbert was also an advocate for formal axiomatic systems, and wanted each of these
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problems to be founded in such a system, and wanted a concrete proof or counter-example
for each statement. This was under the belief that every true statement within an ax-
iomatic system must have a proof within that system, which we will soon see thanks to
Gödel, is not true for every statement.

Meanwhile, other mathematicians were also considering Cantor’s set theory overall,
and finding ways to use the vagueness of its statements to show it wasn’t always entirely
self-consistent.

Cesare Burali-Forti (1861–1931) was one such mathematician, who thought of the
famous Burali-Forti paradox. He considered Ω, the ordinal number greater than all the
ordinal numbers. But then since Ω is itself an ordinal, it would have to be greater than
itself, which is inherently a contradiction.

Bertrand Russell (1872–1970) was another mathematician who thought of a paradox
within the loose definitions of Cantor’s set theory. Russell’s paradox simply constructs
the set of all sets that are not members of themselves. Then this set isn’t a member of
itself, but then it must be in the set, so it must be a member of itself, but then it can’t
be in the set, and this continues forever.

Some mathematicians were adamant that these paradoxes completely dismantled all of
Cantor’s set theory, and that it was all useless now, and others argued that it only contra-
dicted certain properties, or even that the paradoxes were making incorrect assumptions
implicitly. There was plenty of back-and-forth on this, but to some mathematicians, it
was clear that the best way forward was to formally axiomatize set theory so that any
inconsistencies like these simply couldn’t exist within such a framework in the first place.

4. Zermelo-Fraenkel Set Theory (with Axiom of Choice)

Ernst Zermelo (1871–1953) was one of these mathematicians who decided to axiomat-
ize set theory, and his list of axioms was the one that caught on best. Zermelo listed 7
axioms which were able to define an entire base of set theory.

Abraham Fraenkel (1891–1965) was another mathematician who later noticed that
Zermelo’s axioms couldn’t prove the existence of certain sets and cardinal numbers that
were important to some mathematics, so he amended one of the axioms and added another.

Together, this set of axioms laid out by Zermelo and Fraenkel is known as Zermelo-
Fraenkel Set Theory. It would later be shown that the Axiom of Choice was independent
of these axioms, meaning it was consistent with them whether it was considered to be
true or false, and so ZFC is what we call Zermelo-Fraenkel set theory with the Axiom of
Choice included. ZFC is one of the most popular axiomatized set theories used today as
the implicit or explicit basis of much of the mathematics worldwide.

We’ll now look at the axioms behind ZFC. These are each written entirely in a string
of a couple of different logical symbols, and together they implicitly define important
concepts such as sets and membership. Technically there are multiple equivalent ways of
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writing out the axioms, so we use the one that Paul J. Cohen uses in the book in which he
published his result on the Continuum Hypothesis (which will be the last thing we look
at later on).

4.1 Statement of ZFC Axioms

1. Axiom of Extensionality

∀x, y(∀z(z ∈ x ⇔ z ∈ y) ⇒ x = y).

This essentially says that two sets are equal if they have the same elements.

2. Axiom of the Null Set

∃x ∀y(∼ y ∈ x).

This axiom gives the existence of a set that has no elements in it, which is the empty
set/null set, ∅.

3. Axiom of Unordered Pairs

∀x, y ∃z ∀w(w ∈ z ⇔ w = x ∨ w = y).

This axiom allows the creation of another set from two sets by including them both
in a set.

4. Axiom of Union

∀x ∃y ∀z(z ∈ y ⇔ ∃t (z ∈ t ∧ t ∈ x)).

This gives the existence of a set that is the union of all sets contained in another
set. Together with the previous axiom, these allow for the union of any two sets to
exist.

5. Axiom of Infinity

∃x (∅ ∈ x ∧ ∀y (y ∈ x ⇒ y ∪ {y} ∈ x).

This axiom is the basis of the creation of whole numbers. It says any ordinal number
will have a successor that is the union of it and the set containing it. It also allows
for induction, as it says any set that contains the empty set and an ordinal will
contain all successors.
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6. Axiom of Replacement

∀t1, . . . , tk (∀x ∃!y An(x, y; t1, . . . , tk) ⇒ ∀u ∃v B(u, v))

where B(u, v) ≡ ∀r (r ∈ v ⇔ ∃s (s ∈ u ∧ An(s, r; t1, . . . , tk))).

This axiom says that if there is a statement that uniquely describes a set as a
function of a given set, then the image of any set under this function is itself a set.
This axiom is carefully constructed to constrict statements that define sets, so that
sets can’t be defined by ridiculous statements like they were in the paradoxes.

7. Axiom of the Power Set

∀x ∃y ∀z (z ∈ y ⇔ z ⊆ x).

This axiom allows the creation of the power set, the set of all the subsets of a given
set.

8. Axiom of Regularity

∀x ∃y (x = ∅ ∨ (y ∈ x ∧ ∀z (z ∈ x ⇔∼ z ∈ y))).

This axiom states that every nonempty set has a minimal element with respect
to membership. This ends up prohibiting sets from being members of themselves,
which prevents paradoxes that include self-reference.

9. Axiom of Choice

If α → Aα ̸= ∅ is a function defined for all α ∈ x, then there exists

another function f(α) for α ∈ x, and f(α) ∈ Aα.

The Axiom of Choice allows that for any set of nonempty sets, we have a choice
function that maps each member set to an element of that set. This axiom is
important to many areas of math, and has multiple equivalent statements, such as
“Given any family of nonempty sets, their Cartesian product is a nonempty set.”
Recall that this axiom is independent of Zermelo-Fraenkel set theory, so its inclusion,
which is often done today, makes it ZFC instead.

4.1.1 ZFC Effects

These axioms alone are the entire assumed basis used to build up to much of modern
math. ZFC is the standard set theory today, though there are alternatives, but most of
math is built off of these founding axioms. So far, ZFC has worked very well, with no
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inconsistencies found, but we now know that we cannot prove the consistency of ZFC
within the system itself. This result would be thanks to another mathematician who
would make a similar contribution to the Continuum Hypothesis.

5. Independence of the Continuum Hypothesis

Kurt Gödel (1906–1978) was a German mathematician who greatly developed logic
and math and the theory behind proofs that underlies all of math.

In his second incompleteness theorem published in 1931, he discovered that for any
formal axiomatic system, which would naturally include ZFC, it is impossible to prove
within the system that the system itself is consistent. Along with his first incompleteness
theorem, this also showed that there were in fact statements that were true or false that
could not be proven or disproven within a system.

Thus mathematicians discovered that axiomatizing and formalizing had prevented
some paradoxes and inconsistencies, but they could never fully know every true statement
in these systems.

Gödel made an even more important contribution to this topic in particular though,
when he proved that the Continuum Hypothesis was consistent with ZFC. This was done
by showing that it was impossible to prove within ZFC the negation of the Continuum
Hypothesis. In other words, Gödel showed in 1940 that it wasn’t possible to prove that
there wasn’t a set with cardinality strictly between ℵ0 and 2ℵ0 within ZFC. Thus it was
possible that the Continuum Hypothesis was actually true as Cantor had hoped.

It took Paul J. Cohen (1934–2007) to finish this proof by also showing that it was
also impossible to prove the Continuum Hypothesis within ZFC. This proof was highly
technical, and developed a new set theory technique called “forcing,” involving expanding
a universe from an old one with a generic object, while specifically creating it in order to
have certain properties. Using this technique, in 1963, Cohen was able to show that the
opposite of the Continuum Hypothesis was also consistent with ZFC, or that it wasn’t
possible to prove there was a set with cardinality strictly between ℵ0 and 2ℵ0 within ZFC.

These results together provide the independence of the Continuum Hypothesis
from ZFC, or in other words, that it is possible to assume the Continuum Hypothesis
and still have a consistent system, but it is also possible to assume that the Continuum
Hypothesis isn’t true, and also still have another consistent system. Gödel also showed
independence of the Axiom of Choice from ZF, which is why it had to be included in the
axioms, and ZFC has to be clarified as distinct from ZF.

6. Conclusion

Cantor had specifically wanted the Continuum Hypothesis to be true, and Hilbert had
specifically wanted it to be definitively proven or disproven. Although it’s impossible to
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know what either thought about these results found decades after their deaths, I think
it’s safe to assume that Hilbert would be infuriated by the uncertainty Gödel discovered
within mathematics. I think it’s harder to tell what Cantor would have thought, though.
Although it is possible to assume that the Continuum Hypothesis is true and use it in
other results, Cantor spent much of his career convinced that it must always be true, and
could be proven from other results, both things that we now know were not ever the case.

This result then might seem ultimately unsatisfying after all the work done to get to it.
The definitive answer to the Continuum Hypothesis is that there is no definitive answer
and you can do with it what you please. But I’d argue that this result is one of the most
important in modern math, not necessarily because of what was ultimately discovered,
but because of all of the math discovered and/or created in its pursuit. Consider all the
many different mathematical concepts that had to be explained throughout this paper
to begin to understand this topic, and also how most of it was developed specifically to
try to discover this result. We learned that the real numbers are uncountable, about
transfinite ordinals and cardinals, basic set theory, paradoxes, axiomatic set theory, the
axiom of choice, incompleteness, forcing, and many other topics, all of which are extremely
important to much of math today. Even if the conclusion of the Continuum Hypothesis’s
story wasn’t entirely satisfying, the journey to get there should be satisfying enough on
its own. And work is still developing, so it’s more than possible that ZFC with the
Continuum Hypothesis or with the opposite of the Continuum Hypothesis will fuel the
next big discoveries in math.
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