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Turing Patterns 

Abstract: Turing patterns, first proposed by mathematician and computer scientist Alan Turing 

in 1952, describe a fascinating phenomenon of pattern formation within biological systems and 

beyond. His model answers questions like “How do zebras get their stripes?” or “How do 

cheetahs get their spots?” This paper provides a comprehensive overview of Turing patterns, 

beginning with Turing’s idea and the theoretical framework of his reaction-diffusion equations. 

Then, we will discuss how patterns form from a homogeneous system and the mechanisms 

behind which patterns will develop. Next, we introduce Turing’s original mathematical model 

and how each parameter affects the formation of patterns, or lack thereof. Furthermore, we 

explore models based on Turing’s original model that were created after his death. Additionally, 

we highlight recent advances in understanding and modeling Turing patterns in both biological 

and non-biological systems. Lastly, we reflect on the presentation and further research to be 

completed.  

 

1. Alan Turing and Morphogenesis 

 
1.1: Alan Turing. Alan Turing was a well-known English mathematician and computer scientist 

in the mid-1900s. He is best known for his role in the development of theoretical computer 

science with the Turing machine. Additionally, during World War II, he worked with a team to 

create the Bombe, an electrochemical device designed to decipher encrypted codes sent by the 

German military using the Enigma machine. Turing’s expansive work laid the foundation for 

modern day computing and artificial intelligence. In 1952, Turing was convicted of committing 

homosexual acts and was forced to undergo hormone treatment, otherwise known as chemical 

castration. Shortly thereafter, in 1954, Turing died at the age of 41 after eating an apple poisoned 

with cyanide. There are conflicting reports on whether he committed suicide or was poisoned 

accidentally. [1] 

 

1.2: Turing and Mathematical Biology. One of Turing’s more unrecognized interests during his 

studies was his contribution to theoretical biology. In 1951, he published a paper titled The 

Chemical Basis of Morphogenesis. In this paper, he explored how patterns in nature, such as the 

spots and stripes that can be found on animal skin, naturally arise. Morphogenesis is defined as 

“the development of patterns and shapes in biological organisms” [1]. Turing argued that these 

patterns are a result of morphogens: signaling molecules whose non-uniform distribution governs 

the pattern of tissue development in the process of morphogenesis [8]. These morphogens 

diffuse, or spread out, from a localized source to create a concentration gradient. This chemical 

gradient is the basis for the mechanism behind Turing patterns. 

 

1.3: Reaction-Diffusion Systems. A reaction-diffusion system is the interaction between local 

chemical reactions in which substances are transformed into each other and diffusion causing the 

substances to spread out over a surface in space. This process is the basis of Turing’s pattern 

formation theory. During the time of Turing’s discoveries, many believed that diffusion created 
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stable conditions because diffusion is a dissipative system. As a result, it was thought that 

diffusion would simply cause substances to break apart and scatter. Instead, Turing proposed that 

diffusion actually destabilizes a chemical system, causing the creation of patterns. In Turing’s 

model, a system begins with two chemicals: an activator and an inhibitor. The activator promotes 

the production of both itself and the inhibitor. On the other hand, the inhibitor halts the 

production of the activator, creating a negative feedback loop. As the inhibitor stops the activator, 

it consequently stops the production of more of itself. The inhibitor plays a critical role in 

controlling the spatial spread and stability of emerging patterns. [9] 

 

1.4: Reaction-Diffusion System Analogy. Imagine there is a cheetah with no spots (Figure 2). 

Now picture its brown fur as a dry forest. Throughout this forest, fires break out. Luckily, 

though, there are firefighters stationed all throughout the forest who work quickly to extinguish 

the fires by surrounding them and putting them out with water. Additionally, the firefighters can 

always move faster than the fire, allowing them to keep the fires under control. Once the 

firefighters put out a fire, there is a charred spot remaining in the forest and they move on to the 

next one (Figure 3). Zooming back out to the cheetah, it now has small black spots all over its 

previously plain fur (Figure 4).  

 

The fire can be thought of as the activator and the firefighters as the inhibitor, both diffusing 

throughout the forest. The fire creates more of itself as well as draws in more firefighters. The 

firefighters work to put out the fires, but as more and more fires are put out, less and less 

firefighters are needed. It is important to note that the inhibitor must always move faster than the 

activator, or else the activator would spread out of control and overtake the whole system. By 

adjusting the rates at which these two components spread, different patterns can form by Turing’s 

rules. [10] 

Figure 1: Activator-inhibitor loop 

Figure 2: Analogy - cheetah with no spots 

Figure 3: Analogy - firefighters 
extinguishing fires throughout the forest 

Figure 4: Analogy - cheetah with spotted 
pattern 
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2. Formation of Patterns 

 
2.1: Turing Instability. Every system originally begins in a homogenous state where the 

concentrations of activator and inhibitor are uniform. Turing instability is the phenomenon in 

reaction-diffusion systems where homogenous states become unstable and spontaneously give 

rise to spatial patterns. To begin the process, there must first be some kind of small disturbance, 

or perturbation, to the system that destabilizes the homogenous state. As a result, the activator 

and inhibitor concentrations become non-uniform and begin to act on each other as described 

above. The instability escalates from the interplay between the reaction and diffusion processes 

in the system. As the perturbations grow, they eventually reach a size where they become self-

sustaining and promote the formation of spatial patterns. Pictured below are examples of natural 

patterns found on animals that are formed through this process. [3] 

 

 

2.2: Stripes vs. Spots: Even though stripes and spots are seemingly different, they are formed by 

the same mechanism. One way that stripes form instead of spots depends on the rate by which 

both the activator and inhibitor diffuse throughout the system. As stated previously, the inhibitor 

must always diffuse faster than the activator. However, if the activator diffuses at a 

comparatively quick pace while still being slightly slower than the inhibitor, it can temporarily 

“outrun” the inhibitor. As the activator continues to diffuse, the inhibitor “chases” it, blocking it 

from all but one direction. Eventually, though, the inhibitor will catch up and ultimately cut off 

the activator, leaving a stripe in its wake. One can also consider a pattern of spots that begin to 

spread out and “leak” into each other, creating a stripey or labyrinth pattern (Figure 6). 

Alternatively, when Turing patterns play out on irregular surfaces like an animal’s body, different 

patterns can arise on different parts. The exact same system can create spots on a larger surface 

and stripes on a small one. For example, a cheetah often has spots all over its body and stripes on 

its tail since its tail is a much smaller surface. [10] 

Figure 5: Spotted cheetah print Figure 6: Striped pattern on zebra Figure 7: Labyrinth pattern on Mbu pufferfish 
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3. Turing’s Equations 

 
3.1: Partial Differential Equations. A partial differential equation, or PDE, is defined as “a 

mathematical equation that involves two or more independent variables, an unknown function 

(dependent on those variables), and partial derivatives of the unknown function with respect to 

the independent variables” [4]. In other words, a PDE computes a function between various 

partial derivatives of a function with multiple independent variables – where a partial derivative 

of a function with several variables is its derivative with respect to only one of the variables 

while the others are held constant. Partial derivatives are denoted with the symbol “∂”. For 

example, a partial derivative written as ∂f/∂x can be read as: the partial derivative of function f 

with respect to x while y is held constant (assuming that the function f only has independent 

variables x and y).  

 

3.2: Turing’s PDEs.  

The partial differential equations that Turing created to explain Turing patterns are shown above 

where:  

• u and v are the concentrations of the activator and inhibitor substances, respectively. 

• Du and Dv are the diffusion coefficients. 

• ∇2  is the Laplacian operation, representing the spatial variation or curvature. 

• f(u,v) and g(u,v) represent the reaction terms, describing how the concentrations of u and 

v change due to chemical reactions. 

Changing these parameters affects the pattern formation. [3] 

 

Figure 6: Spots "leaking out" into a labyrinth pattern Figure 9: The formation of 
stripes on a small surface 
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3.3: Changing Parameters. The diffusion coefficients Du and Dv describe how fast the activator 

and inhibitor move throughout the surface. Increasing these coefficients can lead to the formation 

of more homogenous patterns whereas decreasing them can promote the formation of more 

localized patterns with sharper transitions between areas of higher and lower concentrations. The 

reaction rates f(u,v) and g(u,v) describe the production of both the activator and inhibitor and 

how the two interact with each other. Increasing the rates of activator production or inhibitor 

inhibition may lead to the formation of more pronounced patterns whereas decreasing these rates 

can result in the suppression of pattern formation or the creation of simpler patterns. The initial 

conditions describing factors such as the surface and the beginning concentrations of activator 

and inhibitor alter the starting point from which the system evolved over time. These conditions 

are a determining factor in the final pattern formation, or lack thereof. [3] 

 

 

4. Reaction Terms 

 
4.1: Turing’s Reaction terms. In Turing’s original paper, The Chemical Basis of Morphogenesis, 

he did not include functional forms of reaction terms. Instead, he simply provided qualitative 

descriptions of the activator-inhibitor interactions and how they affect pattern formation. He 

knew that this was an important component of pattern formation, and those that came after him 

who researched the same topic came up with some functional reaction terms following Turing’s 

descriptions. [12] 

 

4.2: Gierer-Meinhardt Model. In 1972, Alfred Gierer and Hans Meinhardt created a model 

introducing a short-range activator and long-range inhibitor to show pattern formation from a 

homogenous initial system.  

 

∂u/∂t = ∇2u + a + u2/v − bu 

∂v/∂t = Dv∇2v + u2 – cv 

 

Where a, b, c > 0 and D > 1. Notice that the first term in both of these equations resemble the 

first term in Turing’s PDEs (given that Du = 1). Everything that comes after the first term is part 

of the reaction term that Gierer and Meinhardt developed. Changing the parameters in these 

equations influences the type of pattern that is formed, but this system generally favors the 

formation of spots. By changing the initial conditions as shown below, one can observe stripe 

patterns and their instability.  

 

u(0, x, y) = 1 + cos(nπx/L),     v(0, x, y) = 1 

 

A common way to get a stripey or labyrinth pattern using this model is to add a saturation term K 

to the self-activation term u2/v. 

 

∂u/∂t = ∇2u + a + [u2/v(1+Ku2)] − bu 
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∂v/∂t = D∇2v + u2 – cv 

 

Altering the parameters and the value of K > 0 determines the kind of pattern that forms. [5] 

 

4.3: Brusselator Model. The Brusselator Model uses two partial differential equations 

representing a two species chemical reaction (activator and inhibitor).  

 

Where p represents the concentration of the activator and q represents the concentration of the 

inhibitor. The first two equations represent the PDEs, the second two represent the initial 

conditions, and the last one represents the boundary constraints. Pictured below are contour plots 

demonstrating the effect of changing the value of parameter K in the equations.  

 

Notice that the first plot appears more detailed than the other two. This is because the code used 

to create these plots was run until time = 1000 for the first plot and only time = 100 for the 

remaining two. The reasoning behind the discrepancy is that the code took too long to run for 

time = 1000, so the researchers cut down the time to 100 for the sake of saving time. Observe 

how when K = 7, the plot resembles spots. When K = 9, the plot resembles a labyrinth pattern 

with spots. Finally, when K = 11, the plot resembles a more defined labyrinth pattern. [7] 

Figure 7: K = 0 Figure 12: K = 0.003 Figure 11: K = 0.002 

Figure 13: Brusselator contour plot 
at T=1000 and K=7 

Figure 14: Brusselator contour 
plot at T=100 and K=9 

Figure 15: Brusselator contour plot 
at T=100 and K=11 
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5. Advancements Since Turing 
 

5.1: Diffusiophoresis. Researchers have found that Turing’s explanation of diffusive transport 

results in patterns with shallower gradients than those that are found in nature. Recently, some 

researchers have proposed the idea that a process referred to as diffusiophoresis plays a role in 

pattern formation. Diffusiophoresis describes the movement of molecules in response to a 

concentration gradient of a separate chemical. In relation to Turing patterns, the molecules that 

move around in response to the system’s chemical gradient are called chromatophores - defined 

as cells containing pigment. Diffusiophoresis causes the chromatophores to concentrate and 

clump together, creating color sharpening and more distinct patterns than seen in Turing’s 

original model. [2] 

 

5.2: Introducing Computers. Since the introduction of computers as we know them today, 

researchers can investigate Turing patterns like never before. Computer can be used for:  

1. Numerical simulation – computers can solve the reaction-diffusion equations that 

describe Turing patterns using numerical methods. 

2. Parameter exploration – researchers can explore the effects of different parameter values 

on pattern formation by changing values such as the diffusion coefficients, reaction rates, 

initial conditions, stability. 

3. Visualization – computers can generate visualizations using color maps, contour plots, 

surface plots, etc. to show the concentration of activator and inhibitor substances and the 

patterns they create. 

Figure 16: Comparing the patterns created by two 
different reaction-diffusion models with and 

without using diffusiophoresis 

Figure 17: Comparing patterns found in 
nature vs. patterns simulated without 

diffusiophoresis vs. patterns simulated with 
diffusiophoresis 
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4. Comparison with experimental data – compare simulated Turing patterns with those 

found within natural systems to gain insights into the mechanisms underlying pattern 

formation in the real world. 

5. Parameter estimation and model fitting – iterative process that compares simulated 

patterns with experimental observations by adjusting the parameters to minimize any 

disparity between the two [6]. 

5.3: Generative Art. Generative art is an art discipline where either part of the piece or the entire 

piece is created with the help of an autonomous system. This autonomous system is non-human 

and can make decisions independently without any human input, like a computer system or 

algorithm. Jonathan McCabe is an Australian generative artist. In some of his pieces, he began to 

observe the characteristic spotted and striped patterns seen in Turing patterns. McCabe was 

already familiar with Turing patterns and decided to alter his program to specifically mimic a 

chemical system and observe what patterns arose. To do this, he devised a program that used 

pixels in place of cells. The program assigned random numbers to the pixels, each of which 

produced a color. Additionally, the number of pixels changed based on the ones around them, 

mimicking the characteristics of the activator and inhibitor in a system. Originally, McCabe saw 

basic Turing patterns like spots and stripes. Then, he began layering multiple Turing patterns on 

top of each other, creating multi-scale Turing patterns. He began to see Turing patterns mixed 

together or on top of each other, like large stripes comprised of small spots. Depending on what 

McCabe liked and disliked about the patterns that arose, he was able to tweak the algorithm or 

combine different algorithms into one. Many images resemble natural patterns such as iridescent 

fish scales, animal hide, blood vessels, and stained tissue samples. The beauty of generative art is 

that it is completely open to interpretation and every piece turns out differently but equally as 

beautiful as the last. [11] 

 

 

6. Presentation Reflection 

 
6.1: Personal Reflection. I was very happy with how this presentation turned out. After doing 

my last presentation on math in nature, I wanted to stick with something that I found interesting 

and hoped that others would too. It ended up taking me quite a long time to land on this topic. 

Originally, I was not going to do another presentation related to math and nature because I 

Figure 18: Two of McCabe's generative art pieces 
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thought that I had pretty much covered most of the information in my first presentation. So, I 

first started researching what other topics I could present on. However, nothing really piqued my 

interest like I wanted it to. Eventually, I landed on Turing patterns. I remember seeing something 

when I was doing research for my first presentation about how math can be related to animal 

patterns, but I never investigated it. When I went back and looked into it for my second 

presentation, I decided that it was an intriguing topic and something that I would like to share 

with the class. My biggest challenge when researching Turing patterns was to figure out a way to 

explain the biological topics. Obviously, this is a math class and no one is expected to know 

anything about biology. Personally, I have not taken biology in a while and there were some 

pretty complex biological mechanisms in pattern formation. However, I felt like I found some 

good papers that simplified the process and I think I was able to convey the information in an 

understandable way. The other difficulty I had was with the math behind Turing patterns. The 

math that I presented was an extremely simplified version of all the math I read about. I wanted 

to talk about the basics just enough to show the importance of math in describing pattern 

formation without overwhelming the audience. Even I felt overwhelmed when reading about it 

and I could barely understand it myself. However, I feel like I did a good job explaining the 

basics and emphasizing that there is so much more complexity behind pattern formation than I 

mentioned. There are still very important mathematical concepts that I simply did not go into 

detail about for the purposes of my presentation.  

 

6.2: Peer Feedback. Looking over the Blackboard discussion posts, it seems like my peers 

found the topic as interesting as I did. Many people, including myself, did not realize that Turing 

dabbled in theoretical biology. I think the fact that Turing made these discoveries made the topic 

feel almost more significant to the class. Most people knew who Turing was or had at least heard 

of him, so it seemed to me that when they heard that this biological theory was proposed by such 

a familiar name in math, they appeared more interested than they might have been if it was 

someone they had never heard of. On the discussion board, some people asked me some 

questions that I was not sure how to answer. Interestingly, some of the questions were ones that I 

had asked myself, but never had the time to look into. When I did eventually get the chance to 

investigate, I found it difficult to get answers to certain inquisitions. A lot of the mechanisms 

behind Turing patterns are still being researched and I think there simply are not answers to all 

these questions yet. The fact that I was able to read my peers’ questions and use the knowledge 

that I now have to venture a guess into why things are the way they are made me excited, though. 

My guesses are probably not completely accurate, but having enough knowledge about the topic 

to come up with my own ideas shows me that I really did take a lot away from this presentation 

and this class. 

 

6.3: Further Research. The interdisciplinary nature of this field makes it difficult to pinpoint the 

idea to only biological systems. There is evidence that the mechanisms behind Turing patterns 

can be applied elsewhere within biology and outside of it. Research suggests that it could have 

applications in fields such as tissue engineering, biomimetic design, and self-organizing systems. 

It could also be related to processes including embryonic development and ecological dynamics. 

There is still a long way to go in the research of Turing patterns and its applications.  
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