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Transition Probability

» Mouse in a Maze.

Figure 1: The Maze

The mouse can only go to adjacent rooms;

its decisions are independent of any history and only depend
on the current room the mouse is in;

the mouse cannot stay in the same room forever.
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Transition Probability

Figure 1: The Maze

» Let Pj;i be the probability of going to room j when the mouse
is in room i by one move.

> P = % is the probability of moving to room 2 from room 1.

» Pj; = 0 is the probability of staying at room 1 forever.
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Matrix Representations

> To make it more computationally efficient: use matrix

representations

Transition Matrix: P =

up Pji in the matrix.

[ P11

Prl
» To find the transition probability from state / to state j: look
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Pr2
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Transition Probability

» What is the probability of getting to room 5 after 1 step? The
starting state matters.

> If we flip a coin to determine the starting point of the mouse:
say, we put the mouse in room 1 if we get a head, and put the
mouse in room 2 if we get a tail.

» P(starting from room 1) = P(starting from room 2) =
> P(ending up in room 5) = 3 Ps; + 3 Ps)

1
2
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Distributions of Transition Probabilities

» Define every room as a state. What if the probabilities of
initial states are different? Say, roll an unfair 5-sided dice to
determine the starting room.

> S =

> S =

J1

q2
qs | represents the starting state of the mouse.

1
0
0 means that the mouse is in room 1 at the
0

beginﬁing in the fair dice case.
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» Combining the transition matrix and the distribution of
probabilities

1. The distribution of transition probabilities on the states
after 1 step starting from state s is the matrix-vector product

!
(Pq)i = > Pijq; = Piiq1 + Pi2g2 + ... + Pirq,
=

2. The probability of ending up in state j after 2 steps starting
from stateri is:

(P2)ji = 32 PixPri
k=1

7/14



Markov Chains

» In English,
[Next State] = [Matrix of Trans. Probabilities][Current State]

» The predicted value is based solely on the current value
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Applications of Markov Chains

» Predicting Stock Market Trends
A hypothetical market with trends shown as below:

To Bull Bear Stagnant
From
Bull 0.9 0.075 0.025
Bear 0.15 0.8 0.05
Stagnant 0.25 0.25 0.5

» For example, this means that the probability of going from the
bull market to bear market is 0.075, but the probability of
going from bear market to bull market s 0.15.
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» In the previous example of mouse and maze, a state is defined
as the room a mouse is in. In this problem a state is a time
period. Assume in this problem a state is one week long.

» If we set the current week as bearish, then the vector of the
0

initial stateis | 1

0
We can now calculate the probabilities of a bull, bear or a
stagnant week from any number of weeks into the future.

> 1 week from now:

0.9 0.075 0.025 0 0.15
5= 015 0.3 0.05 1| = 0.8
0.25 0.25 0.5 0 0.05
> 5 weeks from now:
09 0075 0025 1° [0 0.48
0.15 0.8 0.05 1 (=] 045
0.25 0.25 0.5 0 0.07

10/14



> 52 weeks from now:

52

0.9 0.075 0.025 0 0.63
0.15 0.8 0.05 1 =] 031
0.25 0.25 0.5 0 0.05

» 100 weeks from now:

100

0.9 0.075 0.025 0 0.63
0.15 0.8 0.05 1 | =1 031
0.25 0.25 05 0 0.05

As the number of weeks go to infinity, the probabilities will
converge to a steady state.
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Hidden Markov Model (HMM)
Hidden Markov Model for Stock Trading (Nguyen, 2017)
» This is a simplified case because we know the matrix of
transtion probabilities, But in many cases, we only know stock
prices, but we dont know the how the market will change.

» Two stochastic processes involved:
Observable: Stock Prices;
Unobservable: 'State of the system’

» Basic elements of a hidden Markov model:
Length of observation data T;
Number of states N;
Observation sequence O = {O,t =1,2..T};
Hidden state sequence Q = {q;,t =1,2...T};
Possible values of each state {S;,i =1,2..N};
Transition matrix A = (aj;), a;j = P(q: = Sj | gt—1 = Sj—1);
Vector of initial probability of being in state S; at time t = 1:
p = (pi); pi = P(q1 = Si);
Observation matrix B.
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Hidden Markov Model (HMM)

Hidden Markov Model for Stock Trading (Nguyen, 2017)

>

>
>

Data:
SP 500 monthly prices from January 1950 to November 2016

Observable

Steps to predict stock prices using HMM:

1. Choose a fixed time period T, calibrate parameters A, B, p,
decide the number of states N;

2. Move the given data (the given observation sequence)
backward to get a new dataset 0" = {O,, 05...0;y — 1};
compute the vector p = (p;);

3. Keep moving backward until we find a new sequence O*,
where p* = P(O*) = P(0);

4. Predict the price at time T + 1 using the formula

OT+1 =01+ (OT*+1 — OT*) . (P(O | A, B) - P(O* | A, B))
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Hidden Markov Model (HMM)

Hidden Markov Model for Stock Trading (Nguyen, 2017)
P> Results
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Figure Al. S&P 500 ‘s predicted prices using the four-state HMM for 40-month out-of-sample period
(left) and 60-month out-of-sample period (right).
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