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Transition Probability

I Mouse in a Maze.

The mouse can only go to adjacent rooms;
its decisions are independent of any history and only depend
on the current room the mouse is in;
the mouse cannot stay in the same room forever.
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Transition Probability

I Let Pji be the probability of going to room j when the mouse
is in room i by one move.

I P21 = 1
3 is the probability of moving to room 2 from room 1.

I P11 = 0 is the probability of staying at room 1 forever.
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Matrix Representations

I To make it more computationally efficient: use matrix
representations

Transition Matrix: P =



P11 P12 ... P1r

. . .

. . .

. . .

Pr1 Pr2 ... Prr


I To find the transition probability from state i to state j : look

up Pji in the matrix.

4/14



Transition Probability

I What is the probability of getting to room 5 after 1 step? The
starting state matters.

I If we flip a coin to determine the starting point of the mouse:
say, we put the mouse in room 1 if we get a head, and put the
mouse in room 2 if we get a tail.

I P(starting from room 1) = P(starting from room 2) = 1
2

I P(ending up in room 5) = 1
2P51 + 1

2P52
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Distributions of Transition Probabilities

I Define every room as a state. What if the probabilities of
initial states are different? Say, roll an unfair 5-sided dice to
determine the starting room.

I S =


q1

q2

q3

q4

q5

 represents the starting state of the mouse.

I S =


1
0
0
0
0

 means that the mouse is in room 1 at the

beginning in the fair dice case.
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I Combining the transition matrix and the distribution of
probabilities

1. The distribution of transition probabilities on the states
after 1 step starting from state s is the matrix-vector product

(Pq)i =
r∑

j=1
Pijqj = Pi1q1 + Pi2q2 + ... + Pirqr

2. The probability of ending up in state j after 2 steps starting
from state i is:

(P2)ji =
r∑

k=1

PjkPki
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Markov Chains

I In English,
[Next State] = [Matrix of Trans. Probabilities][Current State]

I The predicted value is based solely on the current value
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Applications of Markov Chains

I Predicting Stock Market Trends
A hypothetical market with trends shown as below:

I For example, this means that the probability of going from the
bull market to bear market is 0.075, but the probability of
going from bear market to bull market s 0.15.
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I In the previous example of mouse and maze, a state is defined
as the room a mouse is in. In this problem a state is a time
period. Assume in this problem a state is one week long.

I If we set the current week as bearish, then the vector of the

initial state is

 0
1
0

.

We can now calculate the probabilities of a bull, bear or a
stagnant week from any number of weeks into the future.

I 1 week from now:

S1 =

 0.9 0.075 0.025
0.15 0.8 0.05
0.25 0.25 0.5

  0
1
0

 =

 0.15
0.8

0.05


I 5 weeks from now: 0.9 0.075 0.025

0.15 0.8 0.05
0.25 0.25 0.5

5  0
1
0

 =

 0.48
0.45
0.07


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I 52 weeks from now: 0.9 0.075 0.025
0.15 0.8 0.05
0.25 0.25 0.5

52  0
1
0

 =

 0.63
0.31
0.05


I 100 weeks from now: 0.9 0.075 0.025

0.15 0.8 0.05
0.25 0.25 0.5

100  0
1
0

 =

 0.63
0.31
0.05


As the number of weeks go to infinity, the probabilities will
converge to a steady state.
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Hidden Markov Model (HMM)
Hidden Markov Model for Stock Trading (Nguyen, 2017)

I This is a simplified case because we know the matrix of
transtion probabilities, But in many cases, we only know stock
prices, but we dont know the how the market will change.

I Two stochastic processes involved:
Observable: Stock Prices;
Unobservable: ’State of the system’

I Basic elements of a hidden Markov model:
Length of observation data T;
Number of states N;
Observation sequence O = {Ot , t = 1, 2...T};
Hidden state sequence Q = {qt , t = 1, 2...T};
Possible values of each state {Si , i = 1, 2...N};
Transition matrix A = (aij), aij = P(qt = Sj | qt−1 = Sj−1);
Vector of initial probability of being in state Si at time t = 1:
p = (pi ), pi = P(q1 = Si );
Observation matrix B.
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Hidden Markov Model (HMM)
Hidden Markov Model for Stock Trading (Nguyen, 2017)

I Data:
SP 500 monthly prices from January 1950 to November 2016

I Observable

I Steps to predict stock prices using HMM:
1. Choose a fixed time period T, calibrate parameters A,B, p,
decide the number of states N;
2. Move the given data (the given observation sequence)
backward to get a new dataset Onew = {O2,O3...Ot − 1};
compute the vector p = (pi );
3. Keep moving backward until we find a new sequence O∗,
where p∗i = P(O∗) ≈ P(O);
4. Predict the price at time T + 1 using the formula
OT+1 = OT + (OT∗+1 −OT∗) · (P(O | A,B)− P(O∗ | A,B))
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Hidden Markov Model (HMM)
Hidden Markov Model for Stock Trading (Nguyen, 2017)

I Results
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