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Introduction 

 In the prior paper, it looked at the seemingly unrelated connection between frequencies, 

such as light and sound waves, and breaking RSA encryptions through Fourier transforms. The 

equation allowed us to be able to breakdown complex waves into its constituent components. 

The natural application of this equation is with sound and light. The colors that we see all around 

are from light waves ricocheting off an object and hitting our eye. In computer science, we’ve 

managed to capture color scene by representing the color in 2D pixel space. How can we use the 

Fourier Transform to analyze and maybe even modify this pixel space?  

Extending the Fourier Transform 

 To make things simpler, we’ll first look at greyscale images (i.e. an M x N matrix A 

where 0 ≤ 𝐴𝑖,𝑗 ≤ 1 where 0 represents a black square and 1 represents a white square). We need 

a way to be able to map the image space into a corresponding Fourier space. Luckily, the Fourier 

transform is easily extendable into 2D. Since pixel space is discrete, we can use that form of the 

transform 𝐹: (𝑢, 𝑣) → ℂ: 
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where 𝑓(𝑥, 𝑦) represents an entry in the image space A. An image can be represented as a sum of 

bases, where each base is represented by a series of alternating white and black bars across the 

pixel space. The length of each gap represents the frequency, whereas the angling of the bars 

represents the base. The original image is just a weighted sum of all of these bases. Thus, our 

output is just the average sum of all of these bases at each entry of the image matrix A. The 

Fourier transform is invertible with inverse function: 
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The Fourier Space 

 The Fourier space is an identically sized M x N matrix of complex numbers, which 

cannot be easily visualized. Thus, we represent it in two different forms: Magnitude |𝐹(𝑢, 𝑣)| 
and Phase Angle 𝜑(𝑢, 𝑣).  The most commonly used representation of the Fourier space is the 

Magnitude |𝐹(𝑢, 𝑣)| form. The magnitude represents how much each basis contributes to the 

brightness of the whole image. The bases are represented by an angle and a frequency, with 

higher frequencies the further away from the center of the matrix. However, most of the image 

encoding are represented in the higher frequencies. Additionally, we can centralize the higher 



frequencies by shifting the Fourier space such that F(0,0) (the average of every point in the 

image space) is in the center of the grid. Fortunately, since our basis is repeatable in both x and y 

directions, our Fourier space is only one chunk in a periodic space. Thus, we can translate our 

output such that our high frequencies lie in the center.  

The Magnitude space is much more easily analyzed than the Phase Angle space. The seemingly 

random assortment of values encodes where to place each contribution found measured in 

Magnitude. Calculating the Magnitude and Phase of two different images of identical size and 

rebuilding each with the other’s Phase shows the brightness of both images are distorted, but 

their images are swapped. 

Properties of 2D Fourier 

 The 2D Fourier transform has specific properties that will help in modifying an image. 

 Rotation preserved: Rotating an image by some angle 𝜃0 is preserved after transformation 

   𝑥 = 𝑟 cos 𝜃 , 𝑦 = 𝑟 sin 𝜃 , 𝑢 = 𝜔 cos 𝜑 , 𝑣 = 𝜔 sin 𝜑 

   𝑓(𝑟, 𝜃 + 𝜃0) ↔ 𝐹(𝜔, φ + 𝜃0) 

 Convolution Theorem: An image that is convolved in some form (through blurring like 

with a long exposure image, or atmosphere, etc) can be fixed by multiplication in the 

fourier space. 𝐹(𝑓 ⊗  ℎ) = 𝐹(𝑓) ∗ 𝐹(ℎ) where  
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Gaussian Filtering 

 As we learned, the pipeline of modifying an image is to first apply the Fourier transform 

F(u,v), centralize F(0,0), apply some modification function h(x,y), undo the centralization, and 

then apply the inverse Fourier f(x,y). There are many functions that can be applied to modify the 

image, but these are a few basic filters; Ideal, Butterworth, and Gaussian filtering. Each of the 

three filters have low pass (removing lower frequency) and high pass (removing higher 

frequencies) forms. We’ll look only at the Gaussian filter. 

 The low pass Gaussian filter removes any noise that may be present in an image. The 

formula that does this is 

𝐻(𝑢, 𝑣) = 𝑒−𝐷2(𝑢,𝑣)/2𝐷0
2
 

where 𝐷2(𝑢, 𝑣) is the square of the distance between point (𝑢, 𝑣) and the center of the image and 

𝐷0 is some positive constant. This filters out the lower frequencies from the image which cause 

some of the noise. Letting 𝐷0 be small causes the image to blur and remove more noise. 

 The high pass Gaussian filter sharpens the edges. It cuts out the high frequencies which 

hold most of the image brightness information and shows only the edges when inverting the 

transform. The equation that does this is  

𝐻(𝑢, 𝑣) = 1 − 𝑒−𝐷2(𝑢,𝑣)/2𝐷0
2
 



 The high pass is useful in sharpening an image. An image’s sharpness relates to the 

intensity of its edges and the Gaussian high pass finds them. Applying some sort of intensifying 

function along the found edges sharpens the image.  

Image Convolution 

 One of the Fourier properties has to do with convolution. A convolution describes how 

the shape of one function is affected by another. Convolution usually occurs when taking 

pictures like image blurring from long camera exposure and the atmosphere in the photographed 

area. Convolution is usually done using some kernel, a square matrix smaller than the image, and 

applying it in the image space for each pixel. This process is rather complicated, but can be 

easily done as a result of the Convolution Theorem (In the Properties Section).  This allows us to 

be able to represent convolution as multiplication in Fourier space, which is much easier to do 

than regular convolution. This makes using the Fourier space the easiest way to deconvolve an 

image and restore it into its original form. 

Applications and More Research 

 As high filtered images show the edges of objects, it can be used in machine learning for 

object identification. The shape of defined edges tends to be preserved in the Fourier space. 

Since each letter has distinct shape, and the semi preservation of edges, the transform of letters 

can be represented matched like fingerprint. The high filter can also be used in the medical field 

in creating clearer pictures from medical imaging, making it easier for doctors and nurses to 

detect any abnormalities a patient may have. 

 The pixel space of a color image is more slightly more complex than greyscale. Each 

pixel in a colored image uses RGB color values unlike the singular brightness value for greyscale 

images. One method to applying color images is to separate the image into R, G, and B image 

components and apply the Fourier transformation to each component individually. There is new 

research where an image doesn’t have to be separated by representing pixel color as a 

quaternion. Then using an extended quaternion Fourier transform, the whole color image can be 

transformed into its respective Fourier space. There are limitations of using quaternions such as 

losing the property of commutativity. 
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