
OPTIMIZING NETWORKS



NETWORK 
ALGORITHMS

BACKGROUND

• Network algorithms are computational procedures 
designed to solve problems related to networks or graphs.

• A network or graph consists of nodes (vertices) and edges 
connecting these nodes, representing relationships or 
connections between entities. In the context of transportation 
networks, nodes represent locations (such as stations or 
intersections), and edges represent connections between them 
(roads, rails, or other links).

• Importance of Network Algorithms:

• Network algorithms play a crucial role in various domains 
such as computer science, engineering, biology, and social 
sciences.

• They enable efficient problem-solving in tasks like routing, 
optimization, clustering, and analysis of complex networks.

• Scope of Network Algorithms:

• Shortest Path algorithms, Minimum Spanning Trees, Graph 
Traversal, Flow Networks…etc 



GRAPH THEORY 
BASICS

Definition:

• A graph is a mathematical structure 
consisting of a set of vertices (nodes) 
and a set of edges (connections) that 
establish relationships between pairs of 
vertices.

• Directed graphs have edges with a 
specific direction, while undirected 
graphs do not.

Types of Graphs:

• Simple, weighted/unweighted, 
directed/undirected

• Other categories also include 
cyclic/acyclic, connected/disconnected 
… etc



• Greedy Algorithms:

• Greedy algorithms make locally optimal choices at each 
step with the hope of finding a global optimum.

• Pros: efficiency, (when greedy approach works), 
simplicity, optimality in some cases, space efficiency

• Cons: lack of global optimality, dependent on problem 
structure, difficulty in Identifying Greedy Choices, can’t 
backtrack

• Non-Greedy Algorithms

• Non greedy algorithms consider a broader range of 
possibilities to find the globally optimal solution. 

• Pros: Can guarantee optimal solutions, flexibility, 
backtracking.

• Cons: often higher time/space complexity, may not be 
as efficient, can be more complex.

MORE 

BACKGROUND



DIJKSTRA’S ALGORITHM

Objective: Find the shortest path from intersection 
A to intersection F, considering the travel times on 
each road.
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Steps:

1) Mark all destinations as unvisited

2) Assume all nodes have a tentative value of 

infinity before visiting

3) Determine the current node

4) At the current node, compare the distance 

to any unvisited neighbor nodes

5) Update the shortest distance if applicable

6) Mark current node as visited

7) Choose the next current node as unvisited 

node with shortest distance



MINIMUM 

SPANNING 

TREES

A minimum spanning tree (MST) is a graph theory concept utilized 

in algorithms and optimization. It is a subset of the edges of a 

connected, undirected graph that connects all the vertices together 

excluding cycles designed for the minimum possible total edge 

weight.

A minimum spanning tree identifies the most efficient way to 

connect all the nodes (or locations) in a network while minimizing 

the total cost (distance, time, or other metric). In urban design, this 

could represent the optimal layout of roads, pathways, or public 

transportation routes to ensure efficient connectivity between 

different areas within a city.

By identifying the minimum spanning tree of such networks, urban 

planners can reduce travel distances, improve connectivity, decrease 

expenses, and enhance the overall efficiency of these systems.

Applicable to Road Networks, Railway Networks, 

Telecommunication Networks, Supply Chain Logistics…etc



Usage: Prim's algorithm is 

suitable for scenarios where the 

objective is to find the minimum 

spanning tree of a connected, 

undirected graph with weighted 

edges. It's commonly used in 

network design, circuit design, 

and clustering algorithms.

In terms of urban planning it can 

be utilized for network 

optimization techniques to solve 

facility location problems, such as 

determining the optimal 

locations for public services (e.g., 

bus stops, fire stations) to 

maximize accessibility and 

coverage within an urban area.

Prims Algorithm for 
Minimum Spanning Trees

•Step 1: Initialize an empty set to represent the MST and select an 

arbitrary vertex as the starting point. Add this vertex to the MST set.

•Step 2: Repeat the following steps until all vertices are included in the 

MST:

• Step 2a: Identify all edges that connect vertices in the MST set 

to vertices outside the MST set.

• Step 2b: Select the edge with the minimum weight among 

these edges.

• Step 2c: Add the vertex at the other end of this selected edge 

to the MST set.

• Step 2d: Add this selected edge to the MST.

•Step 3: End the algorithm when all vertices are included in the MST.



PRIMS ALGORITHM FOR MINIMUM 
SPANNING TREES
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•Kruskal's algorithm can be relevant 

where the focus is on optimizing the 

overall infrastructure layout rather than 

ensuring specific connectivity paths. 

Kruskal's algorithm can be used to 

determine the minimal set of 

connections required to ensure coverage 

while minimizing costs or resource 

usage.

•Additionally, in transportation planning, 

Kruskal's algorithm can help in 

optimizing the layout of public 

transportation routes or railway lines 

within a city, considering factors such as 

passenger demand, geographic features, 

and construction costs.

Kruskal’s Algorithm for 
Minimum Spanning Trees

•Step 1: Sort all edges of the graph in order of their weights.

•Step 2: Initialize an empty set to represent the MST.

•Step 3: Iterate through the sorted edges:

• Step 3a: Pick the edge with the smallest weight.

• Step 3b: Check if adding this edge to the MST set creates a 

cycle. If not, include the edge in the MST set.

• Step 3c: If adding the edge creates a cycle, discard the edge.

•Step 4: Repeat this process until the MST set contains V−1 edges, 

where V is the number of vertices in the graph.

•Step 5: Terminate the algorithm when the MST set contains V−1 

edges.



KRUSKALS ALGORITHM FOR MINIMUM 
SPANNING TREES
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INTERPRETING 

RESULTS

•Prim's Algorithm Weight (34): The total weight of the minimum 

spanning tree generated by Prim's algorithm is 34 units. 

•Kruskal's Algorithm Weight (34): The total weight of the 

minimum spanning tree generated by Kruskal's algorithm is 34 units.

1.Weight of the MST:

1. The weight of the MST indicates the total cost or length 

required to span all vertices of the graph while forming a 

tree with the minimum total weight. A lower weight implies 

a more efficient or cheaper spanning tree in terms of the 

given weights associated with the edges.

2.Impact of Graph Structure and Edge Weights:

1.  The structure of the graph and the distribution of edge 

weights can influence the results obtained by both 

algorithms. If there are multiple edges with the same weight 

or if the graph has certain properties (e.g., dense vs. sparse), 

it may affect the choice of edges made by the algorithms and 

thus lead to different MSTs.



MORE ALGORITHMS

• Breadth-First Search (BFS):

• BFS is a graph traversal algorithm that explores all the 
vertices in the graph level by level.

• It starts at a specified vertex and explores its neighbors 
before moving to the next level.

• Useful for finding the shortest path in an unweighted 
graph and for exploring connected components.

• Depth-First Search (DFS):

• DFS is a graph traversal algorithm that explores as far as 
possible along each branch before backtracking.

• It starts at a specified vertex and explores as deeply as 
possible along each branch before backtracking.

• Useful for topological sorting, cycle detection, and maze 
solving.



Ant Colony 
Optimization

1.Initialization:

1. Initialize a population of artificial ants.

2. Place them randomly on the problem space.

2.Construct Solutions:

1. Each ant constructs a solution by iteratively selecting edges (or components) 

based on certain criteria, typically guided by both heuristic information and 

pheromone trails.

2. The choice of the next component depends on factors like the amount of 

pheromone on the edge and its desirability (e.g., distance, cost, etc.).

3.Update Pheromones:

1. After all ants have constructed solutions, the amount of pheromone on each 

edge is updated based on the quality of the solutions found.

2. Better solutions typically contribute more pheromone to the edges they 

contain.

4.Evaporation:

1. Pheromone trails are subject to evaporation to prevent stagnation and 

encourage exploration.

2. Over time, pheromone trails naturally decay, simulating the fading of scent in 

the environment.

5.Termination Criterion:

1. ACO iterates through the construction-update cycle until a termination 

criterion is met, such as a maximum number of iterations or reaching a 

satisfactory solution.

Ant Colony Optimization (ACO) is a 
metaheuristic optimization algorithm 
inspired by the foraging behavior of 
ants. It was introduced by Marco 
Dorigo in the 1990s. The basic idea 
behind ACO is to mimic the way ants 
find the shortest paths between their 
nest and food sources.

ACO applications in combinatorial 
optimization problems including the 
traveling salesman problem and the 
minimum spanning tree problem.





QUEUING THEORY

1.Arrival Process: The arrival process describes how entities (e.g., vehicles) arrive at the service facility (e.g., 

intersection). It is often modeled as a Poisson process, where arrivals occur randomly over time according to a Poisson 

distribution.

2.Service Process: The service process describes how entities are served by one or more servers (e.g., traffic signals). It 

is often modeled as an exponential distribution, where service times follow an exponential distribution with a constant 

rate parameter.

3.Queueing Models: Queuing models are mathematical representations of the queuing system, which specify the 

characteristics of the arrival process, service process, number of servers, queue discipline (e.g., first-come-first-served or 

priority), and other relevant parameters.

Performance Metrics: Queuing theory provides several performance metrics to evaluate the performance of the 

queuing system, including utilization (the proportion of time servers are busy), average queue length, average waiting time, 

and system throughput.

Analytical Solutions: Queuing theory offers analytical solutions to determine key performance metrics and optimize 

system parameters. These solutions include Little's Law, Erlang's formulas, and various queuing models such as M/M/1, 

M/M/C, and M/G/1.

Steps:



TRAFFIC QUEUE 
EXAMPLE

Background: Objective is to analyze the 

queuing behavior of vehicles waiting at 

traffic signals and determine optimal signal 

timings to minimize delays and improve 

overall traffic flow.

Traffic Configuration:

•The intersection experiences a steady flow 

of vehicles throughout the day, with an 

average arrival rate of 800 vehicles per hour.

•Vehicles arrive at the intersection following 

a Poisson distribution, representing random 

arrivals over time.

•Service times at the intersection follow an 

exponential distribution, with an average 

service rate of 900 vehicles per hour 

(corresponding to the capacity of the 

intersection to process vehicles).

1.Queuing Model:

We will use the M/M/1 queuing model, where:

1. M represents a Markovian arrival process (Poisson 

distribution).

2. M represents a Markovian service process (exponential 

distribution).

3. 1 represents a single server (traffic signal) controlling the 

flow of vehicles.

2.Key Metrics:

1. Utilization (ρ): The proportion of time the intersection is 

occupied by vehicles.

2. Average Number of Vehicles in the Queue (L): The average 

number of vehicles waiting at the intersection.

3. Average Waiting Time (W): The average time a vehicle spends 

waiting at the intersection before being able to proceed.



TRAFFIC QUEUE 
EXAMPLE

Utilization (ρ):
•Utilization is calculated as the ratio of the 

average arrival rate to the average service 

rate.

•Utilization (ρ) = λ / μ, where λ is the arrival 

rate and μ is the service rate.

•In this example, with λ = 800 vehicles/hour 

and μ = 900 vehicles/hour:

•We can simplify

     λ = 800/60 = 13.33 vehicles per minute

     μ = 900/60 = 15 vehicles per minute

•Utilization (ρ) = 13.33 / 15 = 0.89 (or 89%).

1.Average Number of Vehicles in the Queue (L):

1. The average number of vehicles in the queue is calculated using 

Little's Law: L = λ * W, where L is the average number of vehicles in 

the queue, λ is the arrival rate, and W is the average waiting time.

2. In this example, with λ = 13.33 vehicles/minute and W =.6 minutes, so 

the average number of vehicles in the queue is:

3. L = 13.33 * .6 = 8 vehicles.

1.Average Waiting Time (W):

1. The average waiting time is calculated as the average time a vehicle 

spends waiting at the intersection.

2. W = 1 / (μ - λ), where μ is the service rate and λ is the arrival rate.

3. In this example, with μ = 15 vehicles/minute and λ = 13

vehicles/minute:

4. W = 1 / (15 – 13.33) = .6 minutes = 36 seconds.



Future 

Advancements/ 

Challenges

•Smart City Integration: As 

cities become increasingly 

connected /"smart," network 

algorithms will likely evolve to 

integrate with various data 

sources such sensors, and real-

time data streams. This 

integration can provide more 

accurate and dynamic 

information for optimizing 

traffic flow, resource allocation, 

and infrastructure planning.

•Machine Learning and AI: Advancements in machine learning and 

AI can enable network algorithms to adapt and learn from historical 

data, predict future traffic patterns, and optimize network designs.

Environmental Considerations:  With growing concerns 

about climate change and environmental sustainability, future 

network algorithms may prioritize solutions that minimize 

carbon emissions, promote energy-efficient transportation 

modes, and incorporate green infrastructure into urban 

planning initiatives.

•Multi-modal Transportation: Future network algorithms may 

need to support multi-modal transportation systems, including not 

only cars but also public transit, bicycles, pedestrians, and emerging 

modes such as electric scooters and drones. 



THANK YOU

QUESTIONS?
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