
OPTIMIZING NETWORKS

NETWORK
ALGORITHMS

BACKGROUND

• Network algorithms are computational procedures
designed to solve problems related to networks or graphs.

• A network or graph consists of nodes (vertices) and edges
connecting these nodes, representing relationships or
connections between entities. In the context of transportation
networks, nodes represent locations (such as stations or
intersections), and edges represent connections between them
(roads, rails, or other links).

• Importance of Network Algorithms:

• Network algorithms play a crucial role in various domains
such as computer science, engineering, biology, and social
sciences.

• They enable efficient problem-solving in tasks like routing,
optimization, clustering, and analysis of complex networks.

• Scope of Network Algorithms:

• Shortest Path algorithms, Minimum Spanning Trees, Graph
Traversal, Flow Networks…etc

GRAPH THEORY
BASICS

Definition:

• A graph is a mathematical structure
consisting of a set of vertices (nodes)
and a set of edges (connections) that
establish relationships between pairs of
vertices.

• Directed graphs have edges with a
specific direction, while undirected
graphs do not.

Types of Graphs:

• Simple, weighted/unweighted,
directed/undirected

• Other categories also include
cyclic/acyclic, connected/disconnected
… etc

• Greedy Algorithms:

• Greedy algorithms make locally optimal choices at each
step with the hope of finding a global optimum.

• Pros: efficiency, (when greedy approach works),
simplicity, optimality in some cases, space efficiency

• Cons: lack of global optimality, dependent on problem
structure, difficulty in Identifying Greedy Choices, can’t
backtrack

• Non-Greedy Algorithms

• Non greedy algorithms consider a broader range of
possibilities to find the globally optimal solution.

• Pros: Can guarantee optimal solutions, flexibility,
backtracking.

• Cons: often higher time/space complexity, may not be
as efficient, can be more complex.

MORE

BACKGROUND

DIJKSTRA’S ALGORITHM

Objective: Find the shortest path from intersection
A to intersection F, considering the travel times on
each road.

Node Shortest

Distance

Prior Node

B

C

D

E

5

0 -

A

10 A7X X B

13 BX 12 X C

11 C

17 EF

A

Steps:

1) Mark all destinations as unvisited

2) Assume all nodes have a tentative value of

infinity before visiting

3) Determine the current node

4) At the current node, compare the distance

to any unvisited neighbor nodes

5) Update the shortest distance if applicable

6) Mark current node as visited

7) Choose the next current node as unvisited

node with shortest distance

MINIMUM

SPANNING

TREES

A minimum spanning tree (MST) is a graph theory concept utilized

in algorithms and optimization. It is a subset of the edges of a

connected, undirected graph that connects all the vertices together

excluding cycles designed for the minimum possible total edge

weight.

A minimum spanning tree identifies the most efficient way to

connect all the nodes (or locations) in a network while minimizing

the total cost (distance, time, or other metric). In urban design, this

could represent the optimal layout of roads, pathways, or public

transportation routes to ensure efficient connectivity between

different areas within a city.

By identifying the minimum spanning tree of such networks, urban

planners can reduce travel distances, improve connectivity, decrease

expenses, and enhance the overall efficiency of these systems.

Applicable to Road Networks, Railway Networks,

Telecommunication Networks, Supply Chain Logistics…etc

Usage: Prim's algorithm is

suitable for scenarios where the

objective is to find the minimum

spanning tree of a connected,

undirected graph with weighted

edges. It's commonly used in

network design, circuit design,

and clustering algorithms.

In terms of urban planning it can

be utilized for network

optimization techniques to solve

facility location problems, such as

determining the optimal

locations for public services (e.g.,

bus stops, fire stations) to

maximize accessibility and

coverage within an urban area.

Prims Algorithm for
Minimum Spanning Trees

•Step 1: Initialize an empty set to represent the MST and select an

arbitrary vertex as the starting point. Add this vertex to the MST set.

•Step 2: Repeat the following steps until all vertices are included in the

MST:

• Step 2a: Identify all edges that connect vertices in the MST set

to vertices outside the MST set.

• Step 2b: Select the edge with the minimum weight among

these edges.

• Step 2c: Add the vertex at the other end of this selected edge

to the MST set.

• Step 2d: Add this selected edge to the MST.

•Step 3: End the algorithm when all vertices are included in the MST.

PRIMS ALGORITHM FOR MINIMUM
SPANNING TREES

A

B

C

H

G

I

4

8

2

2

3
7

13

11

D

F

E

6 5

3

4

9

14

=2

+3

+3

+4

+5

+4

+2

+11

Total weight = 34

•Kruskal's algorithm can be relevant

where the focus is on optimizing the

overall infrastructure layout rather than

ensuring specific connectivity paths.

Kruskal's algorithm can be used to

determine the minimal set of

connections required to ensure coverage

while minimizing costs or resource

usage.

•Additionally, in transportation planning,

Kruskal's algorithm can help in

optimizing the layout of public

transportation routes or railway lines

within a city, considering factors such as

passenger demand, geographic features,

and construction costs.

Kruskal’s Algorithm for
Minimum Spanning Trees

•Step 1: Sort all edges of the graph in order of their weights.

•Step 2: Initialize an empty set to represent the MST.

•Step 3: Iterate through the sorted edges:

• Step 3a: Pick the edge with the smallest weight.

• Step 3b: Check if adding this edge to the MST set creates a

cycle. If not, include the edge in the MST set.

• Step 3c: If adding the edge creates a cycle, discard the edge.

•Step 4: Repeat this process until the MST set contains V−1 edges,

where V is the number of vertices in the graph.

•Step 5: Terminate the algorithm when the MST set contains V−1

edges.

KRUSKALS ALGORITHM FOR MINIMUM
SPANNING TREES

A

B

C

H

G

I

4

8

2

2

3
7

13

11

D

F

E

6 5

3

4

9

14

=2

+3

+3

+4

+5

+4

+2

+11

Total weight = 34

INTERPRETING

RESULTS

•Prim's Algorithm Weight (34): The total weight of the minimum

spanning tree generated by Prim's algorithm is 34 units.

•Kruskal's Algorithm Weight (34): The total weight of the

minimum spanning tree generated by Kruskal's algorithm is 34 units.

1.Weight of the MST:

1. The weight of the MST indicates the total cost or length

required to span all vertices of the graph while forming a

tree with the minimum total weight. A lower weight implies

a more efficient or cheaper spanning tree in terms of the

given weights associated with the edges.

2.Impact of Graph Structure and Edge Weights:

1. The structure of the graph and the distribution of edge

weights can influence the results obtained by both

algorithms. If there are multiple edges with the same weight

or if the graph has certain properties (e.g., dense vs. sparse),

it may affect the choice of edges made by the algorithms and

thus lead to different MSTs.

MORE ALGORITHMS

• Breadth-First Search (BFS):

• BFS is a graph traversal algorithm that explores all the
vertices in the graph level by level.

• It starts at a specified vertex and explores its neighbors
before moving to the next level.

• Useful for finding the shortest path in an unweighted
graph and for exploring connected components.

• Depth-First Search (DFS):

• DFS is a graph traversal algorithm that explores as far as
possible along each branch before backtracking.

• It starts at a specified vertex and explores as deeply as
possible along each branch before backtracking.

• Useful for topological sorting, cycle detection, and maze
solving.

Ant Colony
Optimization

1.Initialization:

1. Initialize a population of artificial ants.

2. Place them randomly on the problem space.

2.Construct Solutions:

1. Each ant constructs a solution by iteratively selecting edges (or components)

based on certain criteria, typically guided by both heuristic information and

pheromone trails.

2. The choice of the next component depends on factors like the amount of

pheromone on the edge and its desirability (e.g., distance, cost, etc.).

3.Update Pheromones:

1. After all ants have constructed solutions, the amount of pheromone on each

edge is updated based on the quality of the solutions found.

2. Better solutions typically contribute more pheromone to the edges they

contain.

4.Evaporation:

1. Pheromone trails are subject to evaporation to prevent stagnation and

encourage exploration.

2. Over time, pheromone trails naturally decay, simulating the fading of scent in

the environment.

5.Termination Criterion:

1. ACO iterates through the construction-update cycle until a termination

criterion is met, such as a maximum number of iterations or reaching a

satisfactory solution.

Ant Colony Optimization (ACO) is a
metaheuristic optimization algorithm
inspired by the foraging behavior of
ants. It was introduced by Marco
Dorigo in the 1990s. The basic idea
behind ACO is to mimic the way ants
find the shortest paths between their
nest and food sources.

ACO applications in combinatorial
optimization problems including the
traveling salesman problem and the
minimum spanning tree problem.

QUEUING THEORY

1.Arrival Process: The arrival process describes how entities (e.g., vehicles) arrive at the service facility (e.g.,

intersection). It is often modeled as a Poisson process, where arrivals occur randomly over time according to a Poisson

distribution.

2.Service Process: The service process describes how entities are served by one or more servers (e.g., traffic signals). It

is often modeled as an exponential distribution, where service times follow an exponential distribution with a constant

rate parameter.

3.Queueing Models: Queuing models are mathematical representations of the queuing system, which specify the

characteristics of the arrival process, service process, number of servers, queue discipline (e.g., first-come-first-served or

priority), and other relevant parameters.

Performance Metrics: Queuing theory provides several performance metrics to evaluate the performance of the

queuing system, including utilization (the proportion of time servers are busy), average queue length, average waiting time,

and system throughput.

Analytical Solutions: Queuing theory offers analytical solutions to determine key performance metrics and optimize

system parameters. These solutions include Little's Law, Erlang's formulas, and various queuing models such as M/M/1,

M/M/C, and M/G/1.

Steps:

TRAFFIC QUEUE
EXAMPLE

Background: Objective is to analyze the

queuing behavior of vehicles waiting at

traffic signals and determine optimal signal

timings to minimize delays and improve

overall traffic flow.

Traffic Configuration:

•The intersection experiences a steady flow

of vehicles throughout the day, with an

average arrival rate of 800 vehicles per hour.

•Vehicles arrive at the intersection following

a Poisson distribution, representing random

arrivals over time.

•Service times at the intersection follow an

exponential distribution, with an average

service rate of 900 vehicles per hour

(corresponding to the capacity of the

intersection to process vehicles).

1.Queuing Model:

We will use the M/M/1 queuing model, where:

1. M represents a Markovian arrival process (Poisson

distribution).

2. M represents a Markovian service process (exponential

distribution).

3. 1 represents a single server (traffic signal) controlling the

flow of vehicles.

2.Key Metrics:

1. Utilization (ρ): The proportion of time the intersection is

occupied by vehicles.

2. Average Number of Vehicles in the Queue (L): The average

number of vehicles waiting at the intersection.

3. Average Waiting Time (W): The average time a vehicle spends

waiting at the intersection before being able to proceed.

TRAFFIC QUEUE
EXAMPLE

Utilization (ρ):
•Utilization is calculated as the ratio of the

average arrival rate to the average service

rate.

•Utilization (ρ) = λ / μ, where λ is the arrival

rate and μ is the service rate.

•In this example, with λ = 800 vehicles/hour

and μ = 900 vehicles/hour:

•We can simplify

 λ = 800/60 = 13.33 vehicles per minute

 μ = 900/60 = 15 vehicles per minute

•Utilization (ρ) = 13.33 / 15 = 0.89 (or 89%).

1.Average Number of Vehicles in the Queue (L):

1. The average number of vehicles in the queue is calculated using

Little's Law: L = λ * W, where L is the average number of vehicles in

the queue, λ is the arrival rate, and W is the average waiting time.

2. In this example, with λ = 13.33 vehicles/minute and W =.6 minutes, so

the average number of vehicles in the queue is:

3. L = 13.33 * .6 = 8 vehicles.

1.Average Waiting Time (W):

1. The average waiting time is calculated as the average time a vehicle

spends waiting at the intersection.

2. W = 1 / (μ - λ), where μ is the service rate and λ is the arrival rate.

3. In this example, with μ = 15 vehicles/minute and λ = 13

vehicles/minute:

4. W = 1 / (15 – 13.33) = .6 minutes = 36 seconds.

Future

Advancements/

Challenges

•Smart City Integration: As

cities become increasingly

connected /"smart," network

algorithms will likely evolve to

integrate with various data

sources such sensors, and real-

time data streams. This

integration can provide more

accurate and dynamic

information for optimizing

traffic flow, resource allocation,

and infrastructure planning.

•Machine Learning and AI: Advancements in machine learning and

AI can enable network algorithms to adapt and learn from historical

data, predict future traffic patterns, and optimize network designs.

Environmental Considerations: With growing concerns

about climate change and environmental sustainability, future

network algorithms may prioritize solutions that minimize

carbon emissions, promote energy-efficient transportation

modes, and incorporate green infrastructure into urban

planning initiatives.

•Multi-modal Transportation: Future network algorithms may

need to support multi-modal transportation systems, including not

only cars but also public transit, bicycles, pedestrians, and emerging

modes such as electric scooters and drones.

THANK YOU

QUESTIONS?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8: Prims Algorithm for Minimum Spanning Trees
	Slide 9
	Slide 10: Kruskals Algorithm for Minimum Spanning Trees
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19: Thank you Questions?

