Quantum Tomography: Theory and Practice

Chi-Kwong Li

Department of Mathematics, The College of William and Mary; Institute for Quantum Computing, University of Waterloo

Ongoing project with

Mikio Nakahara, Diane Pelejo, Sage Stanish*, Shuhong Wang*.

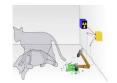
^{*} William & Mary Students.

 There are vertical and horizontal polarization for a photon upon measurement.

- There are vertical and horizontal polarization for a photon upon measurement.
- They are represented by $|0\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and $|1\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$.

- There are vertical and horizontal polarization for a photon upon measurement.
- $\bullet \ \ \text{They are represented by} \ |0\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \ \text{and} \ |1\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix}.$
- It is like a Schrödinger cat. It is either alive or dead.

- There are vertical and horizontal polarization for a photon upon measurement.
- $\bullet \ \ \text{They are represented by} \ |0\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \ \text{and} \ |1\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix}.$



- It is like a Schrödinger cat. It is either alive or dead.
- However, in the quantum environment, the photon is in the superposition state $|\psi\rangle=a|0\rangle+b|1\rangle=\begin{pmatrix} a\\b \end{pmatrix}$ with $a,b\in\mathbb{C},|a|^2+|b|^2=1.$

• We can use $P_1=|0\rangle\langle 0|=\begin{pmatrix}1&0\\0&0\end{pmatrix}, P_2=|1\rangle\langle 1|=\begin{pmatrix}0&0\\0&1\end{pmatrix}$ to "measure" photons.

- We can use $P_1=|0\rangle\langle 0|=\begin{pmatrix} 1&0\\0&0\end{pmatrix}, P_2=|1\rangle\langle 1|=\begin{pmatrix} 0&0\\0&1\end{pmatrix}$ to "measure" photons.
- Upon measurement, the quantum state $|\psi\rangle=\begin{pmatrix} a\\b \end{pmatrix}$ will become $|0\rangle$ or $|1\rangle$ with a probability of $|a|^2$ and $|b|^2$, respectively.

- We can use $P_1=|0\rangle\langle 0|=\begin{pmatrix} 1&0\\0&0\end{pmatrix}, P_2=|1\rangle\langle 1|=\begin{pmatrix} 0&0\\0&1\end{pmatrix}$ to "measure" photons.
- Upon measurement, the quantum state $|\psi\rangle=\begin{pmatrix} a\\b \end{pmatrix}$ will become $|0\rangle$ or $|1\rangle$ with a probability of $|a|^2$ and $|b|^2$, respectively.
- Measurements will "destroy" the quantum states.
 When you open the box containing the Schrödinger cat, you will only see the alive cat or the dead cat.

- We can use $P_1=|0\rangle\langle 0|=\begin{pmatrix} 1&0\\0&0\end{pmatrix}, P_2=|1\rangle\langle 1|=\begin{pmatrix} 0&0\\0&1\end{pmatrix}$ to "measure" photons.
- Upon measurement, the quantum state $|\psi\rangle=\begin{pmatrix} a\\b \end{pmatrix}$ will become $|0\rangle$ or $|1\rangle$ with a probability of $|a|^2$ and $|b|^2$, respectively.
- Measurements will "destroy" the quantum states.
 When you open the box containing the Schrödinger cat, you will only see the alive cat or the dead cat.
- One may also set up other apparatus to measure photons using a different frame, say, $\{|\phi_1\rangle,\phi_2\rangle\}$ with $|\phi_1\rangle=\frac{1}{\sqrt{2}}\begin{pmatrix}1\\1\end{pmatrix}$ and $|\phi_2\rangle=\frac{1}{\sqrt{2}}\begin{pmatrix}1\\-1\end{pmatrix}$.

- We can use $P_1=|0\rangle\langle 0|=\begin{pmatrix} 1&0\\0&0\end{pmatrix}, P_2=|1\rangle\langle 1|=\begin{pmatrix} 0&0\\0&1\end{pmatrix}$ to "measure" photons.
- Upon measurement, the quantum state $|\psi\rangle=\begin{pmatrix} a\\b \end{pmatrix}$ will become $|0\rangle$ or $|1\rangle$ with a probability of $|a|^2$ and $|b|^2$, respectively.
- Measurements will "destroy" the quantum states.
 When you open the box containing the Schrödinger cat, you will only see the alive cat or the dead cat.
- One may also set up other apparatus to measure photons using a different frame, say, $\{|\phi_1\rangle,\phi_2\rangle\}$ with $|\phi_1\rangle=\frac{1}{\sqrt{2}}\begin{pmatrix}1\\1\end{pmatrix}$ and $|\phi_2\rangle=\frac{1}{\sqrt{2}}\begin{pmatrix}1\\-1\end{pmatrix}$.
- Then $Q_1=|\phi_1\rangle\langle\phi_1|=\frac{1}{2}\begin{pmatrix}1&1\\1&1\end{pmatrix}$ and $Q_2=|\phi_2\rangle\langle\phi_2|=\frac{1}{2}\begin{pmatrix}1&-1\\-1&1\end{pmatrix}$ will be the measurement operators.

- We can use $P_1=|0\rangle\langle 0|=\begin{pmatrix} 1&0\\0&0\end{pmatrix}, P_2=|1\rangle\langle 1|=\begin{pmatrix} 0&0\\0&1\end{pmatrix}$ to "measure" photons.
- Upon measurement, the quantum state $|\psi\rangle=\begin{pmatrix} a\\b \end{pmatrix}$ will become $|0\rangle$ or $|1\rangle$ with a probability of $|a|^2$ and $|b|^2$, respectively.
- Measurements will "destroy" the quantum states.
 When you open the box containing the Schrödinger cat, you will only see the alive cat or the dead cat.
- One may also set up other apparatus to measure photons using a different frame, say, $\{|\phi_1\rangle,\phi_2\rangle\}$ with $|\phi_1\rangle=\frac{1}{\sqrt{2}}\begin{pmatrix}1\\1\end{pmatrix}$ and $|\phi_2\rangle=\frac{1}{\sqrt{2}}\begin{pmatrix}1\\-1\end{pmatrix}$.
- Then $Q_1=|\phi_1\rangle\langle\phi_1|=\frac{1}{2}\begin{pmatrix}1&1\\1&1\end{pmatrix}$ and $Q_2=|\phi_2\rangle\langle\phi_2|=\frac{1}{2}\begin{pmatrix}1&-1\\-1&1\end{pmatrix}$ will be the measurement operators.
- Upon measurements, the state $|\psi\rangle$ will become $|\phi_1\rangle$ or $|\phi_2\rangle$.

- We can use $P_1=|0\rangle\langle 0|=\begin{pmatrix} 1&0\\0&0\end{pmatrix}, P_2=|1\rangle\langle 1|=\begin{pmatrix} 0&0\\0&1\end{pmatrix}$ to "measure" photons.
- Upon measurement, the quantum state $|\psi\rangle=\begin{pmatrix} a\\b \end{pmatrix}$ will become $|0\rangle$ or $|1\rangle$ with a probability of $|a|^2$ and $|b|^2$, respectively.
- Measurements will "destroy" the quantum states.
 When you open the box containing the Schrödinger cat, you will only see the alive cat or the dead cat.
- One may also set up other apparatus to measure photons using a different frame, say, $\{|\phi_1\rangle,\phi_2\rangle\}$ with $|\phi_1\rangle=\frac{1}{\sqrt{2}}\begin{pmatrix}1\\1\end{pmatrix}$ and $|\phi_2\rangle=\frac{1}{\sqrt{2}}\begin{pmatrix}1\\-1\end{pmatrix}$.
- Then $Q_1=|\phi_1\rangle\langle\phi_1|=\frac{1}{2}\begin{pmatrix}1&1\\1&1\end{pmatrix}$ and $Q_2=|\phi_2\rangle\langle\phi_2|=\frac{1}{2}\begin{pmatrix}1&-1\\-1&1\end{pmatrix}$ will be the measurement operators.
- Upon measurements, the state $|\psi\rangle$ will become $|\phi_1\rangle$ or $|\phi_2\rangle$.
- Let us do some simple experiments.

• Note that
$$P_1 \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} a \\ 0 \end{pmatrix}$$
.

- Note that $P_1 \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} a \\ 0 \end{pmatrix}$.
- $\bullet \ \ \mathsf{Similarly,} \ P_2 |\psi\rangle = \begin{pmatrix} 0 \\ b \end{pmatrix}.$

- $\bullet \ \, \text{Note that} \,\, P_1 \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} a \\ 0 \end{pmatrix}.$
- Similarly, $P_2|\psi\rangle=\begin{pmatrix}0\\b\end{pmatrix}$.
- Each photon state becomes $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ after a P_1 measurement.

- $\bullet \ \, \text{Note that} \,\, P_1 \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} a \\ 0 \end{pmatrix}.$
- Similarly, $P_2|\psi\rangle=\begin{pmatrix}0\\b\end{pmatrix}$.
- Each photon state becomes $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ after a P_1 measurement.
- Clearly, $P_2P_1|\psi\rangle=\begin{pmatrix}0\\0\end{pmatrix}$.

- $\bullet \ \, \text{Note that} \,\, P_1 \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} a \\ 0 \end{pmatrix}.$
- Similarly, $P_2|\psi\rangle = \begin{pmatrix} 0 \\ b \end{pmatrix}$.
- Each photon state becomes $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ after a P_1 measurement.
- $\bullet \ \, \mathsf{Clearly,} \,\, P_2 P_1 |\psi\rangle = \begin{pmatrix} 0 \\ 0 \end{pmatrix}.$
- Also, $Q_1P_2P_1|\psi\rangle = P_1P_2Q_1|\psi\rangle = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$.

- $\bullet \ \, \text{Note that} \,\, P_1 \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} a \\ 0 \end{pmatrix}.$
- Similarly, $P_2|\psi\rangle = \begin{pmatrix} 0 \\ b \end{pmatrix}$.
- Each photon state becomes $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ after a P_1 measurement.
- Clearly, $P_2P_1|\psi\rangle=\begin{pmatrix}0\\0\end{pmatrix}$.
- Also, $Q_1P_2P_1|\psi\rangle = P_1P_2Q_1|\psi\rangle = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$.
- $\bullet \ \, {\rm But} \, \, P_2 Q_1 P_1 |\psi\rangle = {\textstyle \frac{1}{\sqrt{2}}} \begin{pmatrix} 0 \\ a \end{pmatrix} !!!! \label{eq:power_power}$

- $\bullet \ \, \text{Note that} \,\, P_1 \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} a \\ 0 \end{pmatrix}.$
- Similarly, $P_2|\psi\rangle=\begin{pmatrix}0\\b\end{pmatrix}$.
- Each photon state becomes $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ after a P_1 measurement.
- $\bullet \ \, \mathsf{Clearly,} \,\, P_2 P_1 |\psi\rangle = \begin{pmatrix} 0 \\ 0 \end{pmatrix}.$
- $\bullet \ \ \mathsf{Also}, \ Q_1 P_2 P_1 |\psi\rangle = P_1 P_2 Q_1 |\psi\rangle = \begin{pmatrix} 0 \\ 0 \end{pmatrix}.$
- But $P_2Q_1P_1|\psi\rangle = \frac{1}{\sqrt{2}}\begin{pmatrix} 0\\a \end{pmatrix}!!!$
- ullet After P_1,Q_1,P_2 measurements, we get a quantum state $|1\rangle=egin{pmatrix}0\\1\end{pmatrix}.$

• If one has an ensemble of identical copies of a quantum state $|\psi\rangle=a|0\rangle+b|1\rangle$, then one can do measurement and estimate $|a|^2,|b|^2.$

- If one has an ensemble of identical copies of a quantum state $|\psi\rangle=a|0\rangle+b|1\rangle$, then one can do measurement and estimate $|a|^2,|b|^2.$
- ullet But we will not be ale to estimate the actual complex numbers a,b.

- If one has an ensemble of identical copies of a quantum state $|\psi\rangle=a|0\rangle+b|1\rangle$, then one can do measurement and estimate $|a|^2,|b|^2.$
- ullet But we will not be ale to estimate the actual complex numbers a,b.
- We can apply rotation to $|\psi\rangle$ by a unitary matrix U and measure $U|\psi\rangle$ to get additional information.

- If one has an ensemble of identical copies of a quantum state $|\psi\rangle=a|0\rangle+b|1\rangle$, then one can do measurement and estimate $|a|^2,|b|^2.$
- ullet But we will not be ale to estimate the actual complex numbers a,b.
- \bullet We can apply rotation to $|\psi\rangle$ by a unitary matrix U and measure $U|\psi\rangle$ to get additional information.
- \bullet In quantum physics, $|\psi\rangle$ and $e^{it}|\psi\rangle$ represent the same quantum states.

- If one has an ensemble of identical copies of a quantum state $|\psi\rangle=a|0\rangle+b|1\rangle$, then one can do measurement and estimate $|a|^2,|b|^2.$
- ullet But we will not be ale to estimate the actual complex numbers a,b.
- We can apply rotation to $|\psi\rangle$ by a unitary matrix U and measure $U|\psi\rangle$ to get additional information.
- \bullet In quantum physics, $|\psi\rangle$ and $e^{it}|\psi\rangle$ represent the same quantum states.
- So, we may assume that $|\psi\rangle=a|0\rangle+(b+ic)|1\rangle$ such that $a\geq 0$, $b,c\in\mathbb{R}$ with

$$a^2 + b^2 + c^2 = 1.$$

- If one has an ensemble of identical copies of a quantum state $|\psi\rangle=a|0\rangle+b|1\rangle$, then one can do measurement and estimate $|a|^2,|b|^2.$
- ullet But we will not be ale to estimate the actual complex numbers a,b.
- We can apply rotation to $|\psi\rangle$ by a unitary matrix U and measure $U|\psi\rangle$ to get additional information.
- \bullet In quantum physics, $|\psi\rangle$ and $e^{it}|\psi\rangle$ represent the same quantum states.
- So, we may assume that $|\psi\rangle=a|0\rangle+(b+ic)|1\rangle$ such that $a\geq 0$, $b,c\in\mathbb{R}$ with

$$a^2 + b^2 + c^2 = 1.$$

• If we measure $|\psi\rangle$, we can estimate a^2 and b^2+c^2 .

- If one has an ensemble of identical copies of a quantum state $|\psi\rangle=a|0\rangle+b|1\rangle$, then one can do measurement and estimate $|a|^2,|b|^2.$
- ullet But we will not be ale to estimate the actual complex numbers a,b.
- We can apply rotation to $|\psi\rangle$ by a unitary matrix U and measure $U|\psi\rangle$ to get additional information.
- \bullet In quantum physics, $|\psi\rangle$ and $e^{it}|\psi\rangle$ represent the same quantum states.
- So, we may assume that $|\psi\rangle=a|0\rangle+(b+ic)|1\rangle$ such that $a\geq 0$, $b,c\in\mathbb{R}$ with

$$a^2 + b^2 + c^2 = 1.$$

- If we measure $|\psi\rangle$, we can estimate a^2 and b^2+c^2 .
- Let $H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$, $G = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & i \\ i & 1 \end{pmatrix}$.

- If one has an ensemble of identical copies of a quantum state $|\psi\rangle=a|0\rangle+b|1\rangle$, then one can do measurement and estimate $|a|^2,|b|^2.$
- ullet But we will not be ale to estimate the actual complex numbers a,b.
- We can apply rotation to $|\psi\rangle$ by a unitary matrix U and measure $U|\psi\rangle$ to get additional information.
- \bullet In quantum physics, $|\psi\rangle$ and $e^{it}|\psi\rangle$ represent the same quantum states.
- So, we may assume that $|\psi\rangle=a|0\rangle+(b+ic)|1\rangle$ such that $a\geq 0$, $b,c\in\mathbb{R}$ with

$$a^2 + b^2 + c^2 = 1.$$

- If we measure $|\psi\rangle$, we can estimate a^2 and b^2+c^2 .
- Let $H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$, $G = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & i \\ i & 1 \end{pmatrix}$.
- Then the measurement of $I|\psi\rangle$, $H|\psi\rangle$ and $G|\psi\rangle$ give us the estimates of $a^2, |b+ic|^2 = 1 |a|^2$,

$$|a+b+ic|^2, |a-b-ic|^2 = 1 - |a+b+ic|^2,$$

$$|a+ib-c|^2$$
, $|a+ib-c|^2 = 1||a+ib-c|^2$.

- If one has an ensemble of identical copies of a quantum state $|\psi\rangle=a|0\rangle+b|1\rangle$, then one can do measurement and estimate $|a|^2,|b|^2.$
- ullet But we will not be ale to estimate the actual complex numbers a,b.
- We can apply rotation to $|\psi\rangle$ by a unitary matrix U and measure $U|\psi\rangle$ to get additional information.
- \bullet In quantum physics, $|\psi\rangle$ and $e^{it}|\psi\rangle$ represent the same quantum states.
- So, we may assume that $|\psi\rangle=a|0\rangle+(b+ic)|1\rangle$ such that $a\geq 0$, $b,c\in\mathbb{R}$ with

$$a^2 + b^2 + c^2 = 1.$$

- If we measure $|\psi\rangle$, we can estimate a^2 and b^2+c^2 .
- Let $H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$, $G = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & i \\ i & 1 \end{pmatrix}$.
- Then the measurement of $I|\psi\rangle$, $H|\psi\rangle$ and $G|\psi\rangle$ give us the estimates of $a^2,|b+ic|^2=1-|a|^2,$

$$|a+b+ic|^2$$
, $|a-b-ic|^2 = 1 - |a+b+ic|^2$,

$$|a+ib-c|^2$$
, $|a+ib-c|^2 = 1||a+ib-c|^2$.

• We can then solve for a, b, c.

• A general quantum (mixed) state is an $N \times N$ density matrix ρ , A is Hermitian with nonnegative eigenvalues summing up to 1.

- ullet A general quantum (mixed) state is an N imes N density matrix $ho,\ A$ is Hermitian with nonnegative eigenvalues summing up to 1.
- One can use $U_0=I,U_1,\ldots,U_N$ do measurements of the diagonal entries of $U_j\rho U_j^*$ to determine ρ .

- ullet A general quantum (mixed) state is an $N \times N$ density matrix $ho,\ A$ is Hermitian with nonnegative eigenvalues summing up to 1.
- One can use $U_0=I,U_1,\ldots,U_N$ do measurements of the diagonal entries of $U_i\rho U_i^*$ to determine ρ .
- In quantum computing, $N=2^n$ is an n-qubit system. We can use unitary operators of the form $V_1\otimes \cdots \otimes V_n$ with $V_j\in \{I,H,G\}$ to determine ρ .

- A general quantum (mixed) state is an $N \times N$ density matrix ρ , A is Hermitian with nonnegative eigenvalues summing up to 1.
- One can use $U_0=I,U_1,\ldots,U_N$ do measurements of the diagonal entries of $U_i\rho U_i^*$ to determine ρ .
- In quantum computing, $N=2^n$ is an n-qubit system. We can use unitary operators of the form $V_1\otimes\cdots\otimes V_n$ with $V_j\in\{I,H,G\}$ to determine ρ .
- ullet In this scheme, we need to do 3^n set of such (local) measurements. The number cannot be reduced.

- A general quantum (mixed) state is an $N \times N$ density matrix ρ , A is Hermitian with nonnegative eigenvalues summing up to 1.
- One can use $U_0=I,U_1,\ldots,U_N$ do measurements of the diagonal entries of $U_j\rho U_j^*$ to determine ρ .
- In quantum computing, $N=2^n$ is an n-qubit system. We can use unitary operators of the form $V_1\otimes\cdots\otimes V_n$ with $V_j\in\{I,H,G\}$ to determine ρ .
- In this scheme, we need to do 3^n set of such (local) measurements. The number cannot be reduced.
- In the earlier scheme, we only need $N+1=2^n+1$ sets of measurements. Why do we want to use local measurements only?

- A general quantum (mixed) state is an $N \times N$ density matrix ρ , A is Hermitian with nonnegative eigenvalues summing up to 1.
- One can use $U_0=I,U_1,\ldots,U_N$ do measurements of the diagonal entries of $U_j\rho U_j^*$ to determine ρ .
- In quantum computing, $N=2^n$ is an n-qubit system. We can use unitary operators of the form $V_1\otimes\cdots\otimes V_n$ with $V_j\in\{I,H,G\}$ to determine ρ .
- In this scheme, we need to do 3^n set of such (local) measurements. The number cannot be reduced.
- In the earlier scheme, we only need $N+1=2^n+1$ sets of measurements. Why do we want to use local measurements only?
- We "extend" an n-qubit state ρ as a 2n-qubit state by an operation of the form $\tilde{\rho} = X \rho X^*$, where X is $N \times N^2$ such that $X^* X = I_N$.

- A general quantum (mixed) state is an $N \times N$ density matrix ρ , A is Hermitian with nonnegative eigenvalues summing up to 1.
- One can use $U_0=I,U_1,\ldots,U_N$ do measurements of the diagonal entries of $U_i\rho U_i^*$ to determine ρ .
- In quantum computing, $N=2^n$ is an n-qubit system. We can use unitary operators of the form $V_1 \otimes \cdots \otimes V_n$ with $V_j \in \{I, H, G\}$ to determine ρ .
- In this scheme, we need to do 3^n set of such (local) measurements. The number cannot be reduced.
- In the earlier scheme, we only need $N+1=2^n+1$ sets of measurements. Why do we want to use local measurements only?
- We "extend" an n-qubit state ρ as a 2n-qubit state by an operation of the form $\tilde{\rho} = X \rho X^*$, where X is $N \times N^2$ such that $X^* X = I_N$.
- A measurement of $\tilde{\rho}$ can determine ρ .

• Image recognition.

• Image recognition.

• Quantum error correction.

- Image recognition.
- Quantum error correction.
- Quantum models for economics.

- Image recognition.
- Quantum error correction.
- Quantum models for economics.
- Quantum models for mathematical finance.

- Image recognition.
- Quantum error correction.
- Quantum models for economics.
- Quantum models for mathematical finance.
- Quantum cognition.

- Image recognition.
- Quantum error correction.
- Quantum models for economics.
- Quantum models for mathematical finance.
- Quantum cognition.
- Quantum model for life.