The Sagrada Família Magic Square

Tyler Pringle

Basilica de la Sagrada Família in Barcelona, Spain

So what are

 magic squares?- A magic square is an n-by-n grid of numbers (generally positive integers) where the sums of the numbers in each row, each column, and both main diagonals are the same. This sum is the magic constant of the square.
- A normal magic square includes all the positive integers up to n^{2}.

Are there any other groupings that add up to the magic constant?

16	3	2	13
5	10	11	8
9	6	7	12
4	15	14	1

16	3	2	13
5	10	11	8
9	6	7	12
4	15	14	1

Semi-magic

16	3	2	13
5	10	11	8
9	6	7	12
4	15	14	1

16	3	2	13
5	10	11	8
9	6	7	12
4	15	14	1

Normal/Ordinary

16	3	2	13
5	10	11	8
9	6	7	12
4	15	14	1

16	3	2	13
5	10	11	8
9	6	7	12
4	15	14	1

Associative

1	12	7	14
8	13	2	11
10	3	16	5
15	6	9	4

1	12	7	14
8	13	2	11
10	3	16	5
15	6	9	4

Pandiagonal

1	12	7	14
8	13	2	11
10	3	16	5
15	6	9	4

1	12	7	14
8	13	2	11
10	3	16	5
15	6	9	4

1	12	7	14
8	13	2	11
10	3	16	5
15	6	9	4

Most-perfect

Trivial magic squares

A magic square with repeated numbers is considered trivial, as they're usually not mathematically interesting.

Trivial magic squares

A magic square with repeated numbers is considered trivial, as they're usually not mathematically interesting.

7	10	16	0
15	1	6	11
2	18	8	5
9	4	3	17

This one is nontrivial and still has a magic constant of 33

Important numbers in the Sagrada Familia square

- 33, the magic constant
- Also the traditional age Jesus is believed to have been crucified
- The number $\mathbf{3}$ also has huge importance within Christianity
- The repeated numbers:
$14,14,10 \& 10$
- When added, you get 48 . Divide 48 by 4 and you get the number 12 (12 tribes of Israel, 12 apostles)

Origins of the Sagrada Familia square

- Sculpted by Josep Maria Subirachs sometime after 1987 as a part of the Passion Facade of the Basilica
- Inspired by Albrecht Durer's magic square in the engraving Melencolia I

Albrecht Dürer

Closeup of the square

Melencolia I (1514)

Why did Subirachs put the magic square there in the first place, though?

Mathematical Objects in Melencolia I

Dürer's Solid

Perfect sphere

Compass

16	3	2	13
5	10	11	8
9	6	7	12
4	15	14	1

Melencolia / square

1	14	14	4
11	7	6	9
8	10	10	5
13	2	3	15

Sagrada Família square
0. Start with the Melencolia square

16	3	2	13
5	10	11	8
9	6	7	12
4	15	14	1

1. Rotate square clockwise

How Subirachs transformed the Melencolia square
2. Rotate square clockwise again

4	9	5	16
15	6	10	3
14	7	11	2
1	12	8	13

How Subirachs transformed the Melencolia square
3. Subtract 1 from specific cells, 1 in each row and column

1	14	15	4
12	7	6	9
8	11	10	5
13	2	3	16

How Subirachs transformed the Melencolia square

1	14	14	4
11	7	6	9
8	10	10	5
13	2	3	15

A magical property

Magic squares remain magic when you rotate them by 90 degrees one or more times, when you reflect them horizontally or vertically, or any combination of those two actions.

In other words, magic squares remain magic when transformed by any of the 8 elements of D_{4}.

8	1	6
3	5	7
4	9	2

4	3	8
9	5	1
2	7	6

2	9	4
7	5	3
6	1	8

6	7	2
1	5	9
8	3	4

6	1	8
7	5	3
2	9	4

8	3	4
1	5	9
6	7	2

4	9	2
3	5	7
8	1	6

2	7	6
9	5	1
4	3	8

These 8 squares are considered to be in the same equivalence class.

Magic squares have been around for a while.

Luoshu Square
(as early as 4th century BCE)

4	9	2
3	5	7
8	1	6

a^{2}	b^{2}	c^{2}
d^{2}	e^{2}	f^{2}
g^{2}	h^{2}	i^{2}

Open problem: a 3×3 magic square of squares? ($\$ 100$ prize offered in 1996)

Parshvanatha temple square (12th century CE)

"...the keys to mathematics are beauty and elegance and not dullness and technicality."

Jerry P. King

Sources

- https://blog.sagradafamilia.org/en/divulgation/the-magic-square-the-passion-facade-keys-to-under standing-it/
- https://en.wikipedia.org/wiki/Magic_square
- https://en.wikipedia.org/wiki/Luoshu_Square
- https://en.wikipedia.org/wiki/Sagrada_Fam\�\�lia
- https://en.wikipedia.org/wiki/Melencolia_I
- S. Cammann, "The Magic Square of Three in Old Chinese Philosophy and Religion," History of Religions, vol. 1, no. 1, pp. 37-80, Jul. 1961, doi: 10.1086/462439.
- J. P. King, The Art of Mathematics. Ballantine Books, 1993.
- L. Sallows, "Letters to the editor," The Mathematical Intelligencer, vol. 25, no. 4, pp. 6-7, Sep. 2003, doi: 10.1007/BF02984856.

