Tessellations: The Art of Space Filling

Yining Guo

Presentation Outline

- Definitions and classifications
- Wallpaper groups
- Connections with fractals
- Connections with the Golden Ratio

What is a tessellation?

- A tessellation is a partition of an infinite space into pieces having a finite number of distinct shapes.
- These geometric patterns are called tiles.
- Three types based on the shapes of tiles:
 - **Regular tessellation:** made up of regular polygons of the same size and position

What is a tessellation?

- Three types based on the shapes of tiles:
 - Semi-regular (Archimedean) tessellation: made up of more than one type of regular polygons; tiles fit together in an isogonal arrangement

What is a tessellation?

- Three types based on the shapes of tiles:
 - **Irregular tessellation:** no restrictions; could be made up of any kind of geometric shapes
- The Voronoi diagram is an example.

- Four types of symmetries in a plane (isometries of the Euclidean plane)
 - **Translations:** move every point of a tile by the same distance in a given direction
 - **Rotations:** move a tile around a fixed point
 - **Reflections:** mirror a tile
 - Glide Reflections: reflection and translation

- Categorize all repetitive patterns based on symmetries:
 - 17 Wallpaper Groups
- Formal definition: a type of topologically discrete group of isometries of the Euclidean plane that contains two linearly independent translations.
- 5 kinds of lattices

Square, Rhombus, Parallelogram, Rectangle, Hexagon

Left: patterns for the wallpaper groups

Illustrations of all 17 groups

Group P1

Group P2

Wallpaper Groups in Islamic Art

This is a paper about wallpaper groups in the Alhambra.

From N. Simakoff: "Islamic Designs", p. 28 Design from decorative painting on Bukhara architacture.

From N. Simakoff: "Islamic Designs", p. 40 Design from decorative painting on Bukhara architacture.

Tessellations as fractals: Reptiles
A reptile is called rep-n if it is dissected into n pieces.

- Tessellations as fractals: Reptiles
- Sierpiński Carpet
 - Upper left square: after 1st time
 - Lower right square: after 6th time

TTTTTTTT				

	• • • • • • • • • • • • • • • • • • •	<u></u>		
			***	LA.A.A.A.A.A.A. A.A.A.A.A.A.A.A.A.A.A.A.
			6.306.306.36	563063063
			668 5666	3668-A-A-3666
	be-se be-se		8-96 58-96	36-56 36-5
and Handi Handi Handi	96-36 96-36	36-36 36-363	6	96-36 96-3F
	babaaaababaa	30000	004	1006-u-u-066
		36 966 966 96	endendense	10°500°500°5
	06.306.306.36	36-366-306-36	6-206-206-26	16-206-206-2
			000000000	**************
<u></u>			************	***********
T				

- Fractals as tessellations
 - Must have a non-empty interior
 - Example: the Gosper Island

• After repeating the process on each side for seven times:

Seven copies of the Gosper island join together to form a larger shape.

Penrose Tiles and the Golden Ratio

3 sides	4 sides	5 sides leaves gaps	6 sides	
---------	---------	---------------------	---------	--

Penrose Tiles and the Golden Ratio

- Roger Penrose discovered that such a surface can be completely tiled in a symmetric manner with triangles and a pentagon
- Kite and dart tiling:
 - The ratio of the long side to the short side: the golden ratio involved
 - \circ The ratio of the area of the kite to the dart

Penrose Tiles and the Golden Ratio

• The ratio of the quantities of the two tiles in resulting patterns approaches the golden ratio

http://mypage.concordia.ca/mathstat/pgora/m475/Gosper%20Island.html

https://www.goldennumber.net/penrose-tiling/

https://www.researchgate.net/profile/Yanxi_Liu/publication/2596375_Frieze_and_ Wallpaper_Symmetry_Groups_Classification_under_Affine_and_Perspective_Dist ortion/links/0046351a3bc08c2384000000/Frieze-and-Wallpaper-Symmetry-Group s-Classification-under-Affine-and-Perspective-Distortion.pdf

http://www.quadibloc.com/math/tilint.htm

https://math.dartmouth.edu/~matc/math5.pattern/lesson5math.html