
Magic Rays: The Trickery Behind the “3D

Graphics” of Wolfenstein 3D

Tyler Pringle, MATH 400, 5/12/2024

Abstract

In this paper, I discuss the 2D ray casting employed in id Software’s video game
Wolfenstein 3D. I first go over the mathematical concepts behind the technology
that allow 3D perspective to be simulated without actually modeling 3D objects.
I then go into depth on how ray casting came to be the driver behind the creation
of Wolfenstein 3D, giving much focus to the role of programmer John Carmack,
who developed the core of the game’s ray casting engine. I conclude by reflecting
on the impact of John Carmack and id Software’s contributions to the video game
industry and their use of math to push ‘90s computer hardware to its limits.

1 Why care about 3D graphics in video games?

Though 3D graphics have a wide range of applications, including films, computer-
aided design, and physics simulations, if you ask anybody what they associate 3D
graphics the most with, it is likely that they will answer video games. This should
be no surprise, as video games have grown alongside the development of 3D graphics
and as 3D video games continue to stay at the forefront of popular culture. The first
3D video game consoles, such as Sony’s PlayStation, the Nintendo 64, and the Sega
Saturn, were released in the 1990s and were some of the first introductions many
people had to the technology of 3D graphics. And today, video games remain at the
top of people’s minds when 3D graphics are mentioned, as games like the third-person
shooter Fortnite dominate discussion of today’s popular culture.

A struggle for the video game designer and developer has and continues to be how
they can translate their own unbridled vision of the game in their head into a viable
product that consumers can actually play. This often means that, while developers
may want the most realistic graphics technologically possible for their game, they
ultimately have to consider the limitations of the hardware that the average video
game player uses. Better graphics inevitably mean that there are more surfaces to
take into account for processes like lighting. The more surfaces there are in a scene,

1



Fig. 1: A screenshot fromMetal Gear Solid, released in 1998, showcasing the primitive,
blocky nature of early 3D computer graphics.

Fig. 2: A screenshot from Fortnite taken in 2024.

the more a computer has to calculate how light bounces off of each and every one of
those surfaces. If a computer has to make too many calculations at once, it will start
to slow down, meaning the game will slow down and may even stop. A game slowing
down, stopping, or crashing is absolutely unacceptable for a consumer who just wants
to have fun continually playing a game, so developers have to do whatever they can
to stop that from happening. Thus, there is always a compromise to be made between
what looks the best and what runs the smoothest on the hardware a game’s players
will be using. We can also envision this as a battle between developers and hardware:
what can developers force hardware to do in order to translate as much as their vision
into a game’s final product?

2



The developers at id Software were constantly asking this question and seeking to cover
new ground in the video game industry. id Software, founded in 1991, is renowned for
releasing some of the most iconic and influential games in history, such as Wolfenstein
3D, Doom, and Quake, all of them spawning their own series of games. What the
developers at id realized is that forcing hardware to do what they want oftentimes
requires some clever implementation of mathematical concepts. In this paper, we will
discuss one particular technique that id Software developers used to mimic 3D graphics
and triumph over the limitations of hardware: ray casting, utilized in Wolfenstein 3D
(among other id Software games). This paper will go over some of the math behind this
technique and the history of its implementation within Wolfenstein. To this end, this
paper hopes to paint a picture of tireless developers applying mathematical concepts
to overcome the limits of the technology of their time.

2 The Ray Casting Technique

2.1 Basic Overview

Ray casting, rather than being a singular technique, is a broad category of techniques
that themselves all fall under the umbrella of ray tracing. According to Wikipedia,
a ray-tracing algorithm basically works by “tracing a path from an imaginary eye
through each pixel in a virtual screen, and calculating the color of the object visible
through it” [1]. When talking about video games, though, ray casting is a technique
used to create a 3D projection based on a 2D map. With this technique, video game
developers are able to mimic 3D perspective without actually having to model any 3D
objects or scenes. Ray casting requires fewer calculations than the use of actual 3D
surfaces, which makes ray casting an ideal technique for creating the illusion of fast 3D
graphics on low-end hardware. Or, rather, a developer’s ideal solution for introducing
fast pseudo-3D graphics to video game players in the 1990s.

Fig. 3: Wolfenstein 3D uses ray casting to implement a 3D perspective while using
2D sprites for most other entities, like enemy characters.

3



Wolfenstein 3D, a first-person shooter developed by id Software and initially released
for the DOS family of systems in May 1992, is one of the most popular and influential
examples of the ray casting technique. Although Wolfenstein 3D was not the very first
first-person shooter, the game is considered to be the genre’s first “breakaway hit”
and provided a model to follow for countless games within the genre [2]. Ray casting
allowed the developers of Wolfenstein to quickly render pseudo-3D environments for
players to move around in. The swift rendering speed was necessary for the fast-paced
action that was required for the genre to blossom into an experience that had mass
appeal.

2.2 The Math

This next section is adapted from material by Lode Vandevenne [3].

The ray casting technique used in Wolfenstein 3D requires a 2D map. Additionally,
this map must be based on a 2D square grid structure, so complex geometry beyond
2D squares that aligned with the 2D grid was not possible. The limitations of Wolfen-
stein’s engine also meant that the walls had to be the same height and that height
differences in general were impossible (although it is possible to include variable-height
walls in a ray casting engine, as 1993’s ShadowCaster included these and was based
on Wolfenstein’s engine [4]). So, the engine allowed for rooms based on a 2D grid
structure with 2D sprites inhabiting those rooms.

To understand ray casting, we first have to understand the 2D grid structure we are
using. In the grid, each square either contains a wall or does not. More specifically,
we can encode squares as having a value of 0 for no wall and positive values for the
existence of a wall. Different positive values can be employed for different colors or
textures.

We can treat our computer screen as being aligned with the 2D Cartesian coordinate
system, with the X-axis running along either the top or bottom of the screen and
the Y-axis running along the left side of the screen. Thus, we can treat each vertical
column of pixels as representing discrete values along a vertical line for a particular X
coordinate, like X = 1. With this in mind, we can start casting our rays: for every X
coordinate, or vertical column of pixels, we cast out a ray starting at the player that
is based on the player’s current viewing direction and the particular X-coordinate.
Remember that we are dealing with a 2D map, so the player and rays we are casting
exist on the 2D grid structure. We then let the ray move forward through the grid
until it hits a wall square. Once the ray hits a wall, we calculate the distance of the
hit point to the player, using this distance calculation to determine how tall/close

4



the wall should appear on the screen. If a wall is further away, then its height should
appear shorter on the screen.

Fig. 4: Top-down view of two rays (red) starting from the player (green) and hitting
the blue walls. (image by Lode Vandevanne)

The change in height of the walls is what gives the illusion of depth in the perspective.
Specifically, Wolfenstein utilizes a form of perspective projection, where lines that
are parallel in the game world appear to converge towards each other at a horizon.
Additionally, in Wolfenstein 3D, any area underneath the calculated walls is given a
solid color for the floor, and the same occurs for any area above the calculated walls.

Although a human can immediately tell where a ray hits a wall, this is not true for
computers, as a computer can only check a finite number of positions on the ray. A
computer has to let the ray start at the player’s position, let the ray move a particular
distance, and check if the ray’s position is currently inside a wall. If the ray is not
inside a wall, then the computer has to repeatedly step and check if the ray is inside
a wall, stopping once a wall is hit. If we let the ray go a constant distance before
checking on its position, there’s a chance that the ray could pass through a wall. What
we need is an algorithm that guarantees that we will hit a wall.

Therefore, what we should do instead is check every side of a wall that a ray will
encounter along the way. We can give each grid square a length/width of 1 so that every
line on the grid (e.g. the sides of walls) matches up with an integer value. This makes
the step size vary as the ray moves forward. There are different ways of calculating the
step size as the ray travels through the grid, but that is beyond the scope of this paper.

To actually represent the direction of the players and the rays, there are a few different
methods a developer could use, two of which I will quickly mention. One involves
representing the directions as Euclidean angles and treating the field of view (an angle
indicating how much of the world a player can see from their first-person view) as

5



Fig. 5: Here, we check on the ray every time it might hit a wall, e.g. every time it
intersects with one of the lines on the grid. (image by Lode Vandevanne)

another angle. Another method utilizes vectors, treating the position of the player
as a vector and their viewing direction as another angle. With this method, we also
implement a line/vector that is (almost always) perpendicular to the viewing direction
vector, and we treat it as the camera plane. With this camera plane, we can represent
each ray as the sum of the player’s position vector, their direction vector, and a multiple
of the camera plane vector. This camera plane represents the screen, so we can easily
match up a ray with the x-coordinate, or column of pixels, it should correspond to.

3 History of the Technique

Fig. 6: Screenshot of 1973’s Maze War on a Xerox Alto workstation. This game is
rendered using a technique called wireframe rendering, not ray casting.

6



3.1 Background

It should first be made clear that the developers at id Software were not the first to
create a game with a first-person 3D perspective: that recognition goes to Steve Colley,
Greg Thompson, and Howard Palmer of NASA who developed Maze War in 1973 [5].
The graphics in this game, while quite primitive even by the time of Wolfenstein’s
release, bear quite a bit of resemblance to the very rectangular and boxy nature of
Wolfenstein’s rooms. While Maze War did not utilize ray casting, opting instead for
wireframe rendering, the game provided a foundation for 3D graphics in video games
that first-person shooter games would build upon in the coming decades.

Fig. 7: Screenshot of WayOut running on an Atari 800, showcasing the simplistic
solid-color walls used in this game’s ray casting engine.

Wolfenstein 3D was not even the first to utilize what we can call 2D ray casting to
implement a 3D perspective. As early as 1982, Paul Allen Edelstein’s WayOut used
ray casting to represent its world [6]. Of course, the game was still a far cry from
Wolfenstein, with only blue walls and one other entity (the ‘Cleptangle’ antagonist) to
render. Nonetheless, WayOut proved ray casting’s ability to render a first-person 3D
perspective with smooth 360-degree rotation on consumer hardware, which was quite
a marvel in 1982. For the more sophisticated ray casting of Wolfenstein 3D, though,
more improvements to the ray casting algorithm and somewhat more advanced tech
would be needed.

7



However, by 1991, there were not many improvements made to the 2D ray casting
technique. 1987 brought MIDI Maze, another ray-cast game with smooth rotation
and networking capabilities that amazed people of the day (up to 16 people could
play at once to shoot at each other) [5]. Graphically, though, the game was only
somewhat better than WayOut : instead of the walls being a single solid color, the
walls were different shades of gray. It was not until John Carmack of id Software began
experimenting in 1991 that we saw major improvements in the ray casting technique.

Fig. 8: Screenshot of 1987’s MIDI Maze.

3.2 id Software’s Work

id Software had its more informal start in late 1990 with just four employees at the
software company Softdisk: John Romero, John Carmack, Tom Hall, and Adrian Car-
mack [7]. They had their official start on February 1, 1991, after releasing a few
episodes of their 2D platformer series Commander Keen, and they continued on mak-
ing games (some of which were still made under contractual obligation to Softdisk).
Around this time, programmer John Carmack wanted to experiment with 3D com-
puter graphics and figure out how he could render authentic, smooth 3D scenes on
the average home computer. Thus, after id’s official founding, Carmack quickly began
work on a 3D engine that used ray casting to render the world and 2D sprites to rep-
resent enemies and other characters. According to Carmack, this engine took about
6 weeks to develop and became the 3D first-person shooter Hovertank 3D, which was
released in April 1991 [8].

Carmack had to work with a lack of resources on the implementation of ray casting,
which explains why the ray-cast graphics of Hovertank 3D were not that much of a
graphical jump from something like MIDI Maze. Either way, after the release, John

8



Fig. 9: John Carmack’s first foray into ray casting with the game Hovertank 3D.

Carmack was actually shown a demo of Ultima Underworld, an RPG with a similar 3D
perspective that implemented texture mapping (mapping a picture onto a surface
rather than just a solid color). The engine for Ultima Underworld did have to sacrifice
some speed for the texture-mapped 3D perspective, though. Upon seeing this demo,
Carmack was determined to create an engine that included faster texture mapping [9].
This led to Carmack working to enhance the Hovertank to include just such a thing,
and he spent another 6 weeks on this endeavor. The final product of this project was
Catacomb 3-D, another first-person shooter that id released in November 1991. With
texture-mapped graphics that ran at a nice frame rate on average home consumer
hardware, Carmack and the rest of the team were getting closer to their breakthrough
pseudo-3D title.

Fig. 10: John Carmack quickly modified his engine for Hovertank 3D to include
texture mapping, showcased here in the walls of Catacomb 3-D.

9



After the team at id Software decided to work on a fast-paced 3D action game, they
decided to base the game off of 1981’s action-adventure game Castle Wolfenstein. They
acquired the rights to the name and began work on what would become Wolfenstein
3D on December 15, 1991 [10]. Carmack spent another four weeks improving the
raycasting engine from Catacomb 3-D, with improvements ranging from support for
doors to faster and higher-resolution graphics. From here, the level designers, John
Romero and Tom Hall, were able to design levels using the 2D tile editor that was
utilized for their Commander Keen platformers, as the ray casting engine would handle
the 3D projection of the 2D maps Romero and Hall created [8]. Ultimately, id Software
would finish up their work on the game in Spring 1992 and initially release Wolfenstein
on May 5, 1992.

4 Conclusion

Fig. 11: Despite looking primitive now, Wolfenstein 3D changed the way the public
saw gaming.

Wolfenstein 3D became a breakout hit: through a shareware distribution system,
where id would freely give out an extended demo of Wolfenstein and sell the rest of
the game separately, by mid-1994, id had sold 150,000 real copies of Spear of Destiny
expansion to the game and estimated “worldwide shareware distribution to top one
million” [11, p. 22]. The immersiveness of the 3D ray-cast environments and the gra-
tuitous violence revolutionized the ‘90s video game industry and showed that the PC

10



was capable of more than just strategy and flight simulation games [12, p. 105]. None
of this would have been possible without the vision of the four small-time program-
mers looking to shake things up within the field of video games. Of course, vision is
not enough to bring about change. You need to know-how to back up your vision, and
id had the know-how in spades.

John Carmack more than exemplified this fact through his work to develop the ray
casting engine that would eventually be the core of Wolfenstein 3D. He found himself
wanting to solve the problem of smooth 3D graphics on hardware that was accessible to
the average consumer. So, he experimented and delved into the rather unconventional
technique of ray casting. Understanding and implementing a technique such as ray
casting in a game and having it run smoothly on hardware we now consider insanely
primitive was a feat that only a few programmers could aspire to. But John Carmack
and the developers at id did it anyway by going through the trouble to understand
the math behind implementing a basic 3D perspective and using their ingenuity to
have this math be calculated as quickly as possible. After all, limits are meant to be
broken, but only by those who understand why and how those limits are there in the
first place.

References

[1] Ray tracing (graphics). Page Version ID: 1223357437 (2024). https://en.
wikipedia.org/w/index.php?title=Ray tracing (graphics)&oldid=1223357437
Accessed 2024-05-13

[2] Shachtman, N.: May 5, 1992: ’Wolfenstein 3-D’ Shoots the First-Person Shooter
Into Stardom (2008). https://web.archive.org/web/20111025220612/http:
//www.wired.com/science/discoveries/news/2008/05/dayintech 0505 Accessed
2024-05-13

[3] Vandevenne, L.: Raycasting (2020). https://lodev.org/cgtutor/raycasting.html
Accessed 2024-05-13

[4] Peel, J.: The life and times of John Romero, gaming’s original rock-
star – part 3: Nightmares (2016). https://www.pcgamesn.com/quake/
john-romero-interview-part-3 Accessed 2024-05-13

[5] Thor Jensen, K.: Knee Deep in the Dead: The History of
First-Person Shooters (2022). https://www.pcmag.com/news/
the-complete-history-of-first-person-shooters Accessed 2024-05-14

[6] Evans-Thirlwell, E.: The history of the first-person shooter. PC Gamer (2017).
Accessed 2024-05-14

11

https://en.wikipedia.org/w/index.php?title=Ray_tracing_(graphics)&oldid=1223357437
https://en.wikipedia.org/w/index.php?title=Ray_tracing_(graphics)&oldid=1223357437
https://web.archive.org/web/20111025220612/http://www.wired.com/science/discoveries/news/2008/05/dayintech_0505
https://web.archive.org/web/20111025220612/http://www.wired.com/science/discoveries/news/2008/05/dayintech_0505
https://lodev.org/cgtutor/raycasting.html
https://www.pcgamesn.com/quake/john-romero-interview-part-3
https://www.pcgamesn.com/quake/john-romero-interview-part-3
https://www.pcmag.com/news/the-complete-history-of-first-person-shooters
https://www.pcmag.com/news/the-complete-history-of-first-person-shooters


[7] Fahs, T.: The Early Years of id Software (2008). https://www.ign.com/articles/
2008/09/23/the-early-years-of-id-software Accessed 2024-05-15

[8] Wolfenstein 3D 20th Anniversary Director’s Commentary with John Car-
mack. Section: DOOM (2017) (2012). https://nl.ign.com/doom-4/50308/video/
wolfenstein-3d-20th-anniversary-directors-commentary-with-john-carmack
Accessed 2024-05-15

[9] Mallinson, P.: Games that changed the world: Ultima Underworld (2002). https:
//web.archive.org/web/20071212192612/http://www.computerandvideogames.
com/article.php?id=28003 Accessed 2024-05-15

[10] Taylor, D.: An Interview with ID Software. Game Bytes (4) (1992). Accessed
2024-05-15

[11] Lombardi, C.: To Hell and Back Again. Computer Gaming World (120), 20–24
(1994)

[12] NEXT Generation 51, (1999). http://archive.org/details/NEXT Generation 51
Accessed 2024-05-15

12

https://www.ign.com/articles/2008/09/23/the-early-years-of-id-software
https://www.ign.com/articles/2008/09/23/the-early-years-of-id-software
https://nl.ign.com/doom-4/50308/video/wolfenstein-3d-20th-anniversary-directors-commentary-with-john-carmack
https://nl.ign.com/doom-4/50308/video/wolfenstein-3d-20th-anniversary-directors-commentary-with-john-carmack
https://web.archive.org/web/20071212192612/http://www.computerandvideogames.com/article.php?id=28003
https://web.archive.org/web/20071212192612/http://www.computerandvideogames.com/article.php?id=28003
https://web.archive.org/web/20071212192612/http://www.computerandvideogames.com/article.php?id=28003
http://archive.org/details/NEXT_Generation_51

	Why care about 3D graphics in video games?
	
	


	The Ray Casting Technique
	Basic Overview
	

	The Math
	
	
	
	
	
	
	



	History of the Technique
	Background
	

	id Software's Work
	
	



	Conclusion
	


