
Curry-Howard Correspondence
Wesley Jenkins

MATH 400: Mathematical Connections
wljenkins@wm.edu

Abstract—This paper is about the Curry-Howard Correspon-
dence and how it demonstrates the strong connection between
abstract mathematics and concrete computer science.

I. INTRODUCTION

The Curry-Howard correspondence is a connection between
two very important fields of study: mathematics and computer
science. It connects many features of mathematics and com-
puter science in a very surprising way, which can help in
providing a new perspective to both. Thus, it has important
consequences in both mathematics and computer science, and
it very useful both theoretically and in actual use.

II. PROOFS

First comes the question of what is a proof? While all
math students have encountered proofs, it can be difficult to
exactly define what a proof is. The simplest, and most general,
definition is that a proof is “a thing which shows something
to be true.” Every proof must exist within some framework,
given some base assumptions; for most modern proofs, this
is Zermelo-Franken set theory (with or without the axiom of
choice).

But the most important thing is that proofs are normal
objects, and one can create a set of them:

P (X) = (Set of proofs of fact X)

And then one can use standard set theory operations to
manipulate this set. The standard logical operations translate
to set theory as so:

Logical Operations Set theory
X is true P (X) is inhabited
X ∧ Y P (X)× P (Y )
X ∨ Y P (X) ∪ P (Y )

(X =⇒ Y ) P (X)→ P (Y )
(∀(n ∈ N)X(n) (n : N)→ P (X(n))
(∃(n ∈ N)X(n) (n : N)× P (X(n))

This requires the addition of the peculiar dependent product
and sum types. These objects are similar to normal functions
and cartesian products, except the second set depends on the
value present from the first. Thus, it is a dependent type.

And here are a few examples,
• The first is a proof that if 2 is even, then 4 is even. This

can be represented as P (2 is even)→ P (4 is even). The
domain of this function is proofs that 2 is even, and the
codomain is proofs that 4 is even. Thus, it can be thought
of in the way, “given proof that 2 is even, this function

can give you proof that 4 is even.” Of course since 4 is
trivially proven as even, this proof is trivial.

• The second is proof that all integers are real numbers.
This can be represented as (n : Z)→ P (n is real). Here,
while the domain is Z, the co-domain is the union of
proofs for all possible integers. This function is only valid
if it is well-defined, and thus is has a proof for all possible
Z, which is why it is equivalent to a for-all statement.

• The final is proof that there exists an integer less than 5.
This can be represented as (n : Z) × P (n < 5). Here,
there must only exist a proof P (n < 5) for at least one
n for this object to be inhabited.

III. PROGRAMS

Next comes the question of what is a program? Yet again,
it can be difficult to nail down an exact definition for this,
especially one that everyone will agree to. However, a suitable
response is that a program is a sequence of steps to perform
some computation. There will be some form of input and some
form of output.

But the exact steps can vary, because there are multiple
abstract models of computation. There are multiple Turing ma-
chines like standard Turing machines, random access Turing
machines, quantum Turing machines, etc. All Turing machines
can solve the same set of problems, called Turing computable,
but the complexity of problems can vary (For example, on a
standard Turing machine, prime factorization runs in nearly
exponential time, while it can run in linear time on a quantum
Turing machine). There are also multiple different forms of
lambda calculus, which were proven by Turing to be equivalent
to Turing machines as well.

But moving away from the theoretical, there are many pro-
gramming languages which are used to write actual programs
to execute on physical computers. These programming lan-
guages are said to be Turing complete if they can theoretically
perform any calculation that a Turing machine can, except they
obviously are going to be limited by physical resources like
memory and time constraints unlike a theoretical machine.

IV. TYPE THEORY

As said before, a program can be thought of as a sequence of
steps to perform some computation. These steps must operate
on some values, and these values are commonly given types.
When manipulating values, its type details how to perform
said operations. For example, adding two integers must be
performed differently from adding two vectors; the value’s
types can explain exactly what addition means for that specific



value, and how to implement it. But types are also equivalent
to sets containing all possible values of that type.

Programming languages vary widely in their usage of types,
from being completely untyped to being statically typed,
meaning all types must be known at compile time. A statically-
typed language is equipped with a type-checker which verifies
that all statements are of the correct expected type. This is
equivalent to proving that a statement evaluates to a given
type.

As an example, Python is dynamically typed. Every object
in Python has a type, but this type doesn’t have to be known
beforehand, and variables can change type at any time. This
can be contrasted with C++, where all variables must have
their types given, which cannot change during the course of
the program.

V. PROOF TYPES

As said before, P (X) is the set of proofs of some fact X .
And since this set is equivalent to some type in a program, one
can write a program to simulate the manipulations presented
earlier. And this isn’t just an interesting way of writing proofs:
the type checker becomes equivalent to a proof checker. Be-
cause by proving that an expression evaluates to the expected
type (which represents a proof), that proves that it actually
constructs a proof.

But this requires that the expression actually evaluate at all.
There are multiple problems with this.

First of all, many programming languages have “escape
routes.” That is, it’s possible for an expression to never actually
evaluate to anything. For example, a C expression could call
the exit function, and then the program would simply end!
Alternatively, a program could be infinitely recursive, meaning
it will never end (Until it eventually crashes).

Therefore, for this to work, there need to be some restric-
tions on the program itself. Every expression must finish eval-
uating: it cannot secretly exit the program and cannot infinitely
recurse. By making these restrictions, it now becomes possible
to provide guarantees on the types of expressions, and thus the
generation of proofs. But what are the consequences of these
restrictions exactly? That will be discussed later.

There have been multiple attempts at creating languages
which obey these rules. A good example of this is Agda, which
has a complex enough type system to allow the creation and
verification of real proofs. It also disallows any kinds of escape
routes like ending the program early or recursing infinitely.
However, due to its complexity, it has had problems finding
usage outside of the math community.

VI. CURRY-HOWARD CORRESPONDENCE

And thus, it becomes clear the connection between proofs
and programs. A proof which relies on some assumptions
and produces proof of some fact can be embedded inside
of a program which relies on some input and produces
some output. And type checking becomes equivalent to proof
checking under this embedding.

But the Curry-Howard correspondence goes further than
this, stating that proof systems and systems of computation
are isomorphic to one another. They are different ways of de-
scribing the same set of rules. And all valid logical arguments
can be turned into a runnable program, while all runnable
programs can be turned into logical arguments.

This correspondence connects computation and logic and
also unifies certain parts of mathematics and foundational
computer science. It turns abstract logical arguments into
actualizable programs, which has potential philosophical con-
siderations as well.

VII. USE IN MATHEMATICS

As stated before, there have been multiple attempts at
creating real programming languages which obey the rules
required to make the Curry-Howard correspondence work.
However, one of the rules mentioned before is that expressions
cannot contain any kind of “escape route.” That is, it must
be able to prove that given the specific proof inputs, the
expression will successfully terminate. Of course, this is in
violation of Turing’s halting problem, which states that it is
impossible to determine for all programs whether they will
terminate or not.

Therefore, there must exist programs which will terminate
and yet will not be accepted by the type checker. And thus,
there must be facts which cannot be proven, because any pro-
gram which proves them will not be accepted as terminating.

This sounds remarkably similar to the common problem
in mathematics, Gödel’s incompleteness theorem. And indeed
they are intimately related. If all programs could be proven
as terminating or not, then this would allow for the proving
of all facts by the correspondence, thus violating Gödel’s in-
completeness theorem. And thus, the halting problem implies
Gödel’s incompleteness theorem.

Therefore, the correspondence has a lot of use in under-
standing a new perspective on either problem. For many,
Gödel’s incompleteness theorem is complicated, yet the halting
problem can be much easier to explain. You can always
think that the halting problem is what’s truly at the heart
of Gödel’s incompleteness theorem: The reason some facts
can’t be proven is because it’s impossible to write a computer
program proving it that will always terminate!

VIII. USE IN PROGRAMMING

But it also has a lot of use in programming as well.
By writing proofs into programs, one can write programs

with guaranteed behavior. Once a program’s behavior has
been proven, the program itself can be extracted, which is
guaranteed to be correct (Assuming there are no bugs in the
compilation process).

This can be utilized in a variety of ways. For example,
Microsoft is currently using their proof language F* to write
encryption and decryption functions that have guaranteed
behavior, where proving the security of implementations is
usually extremely difficult. Bugs in these kinds of software
are scarily common and can undermine the security of the



entire encryption algorithm, and therefore there is a lot of use
in having proven versions of these primitives.

Yet, most user programs are unlikely to be proven due to
the sheer amount of effort required in writing proven code,
which is why it is best reserved for small extremely-important
software libraries or programs. And hopefully, as this use case
matures, more and more of these sensitive softwares will be
proven correct, which would drastically improve computer and
network security globally. All that’s needed is more people
willing to write the software that’s required.

IX. CONCLUSION

And so, the Curry-Howard correspondence is an extremely
interesting and useful correspondence. It has both theoretical
and actual use cases, from a better understanding of abstract
mathematics to improving various computer programs’ secu-
rity.

But it requires a lot more study. The best method of con-
verting between programs and proofs, given how complicated
Turing machines programs can be, is still uncertain. There are
multiple different methods currently in use, many borrowing
concepts from category theory like monads and functors, but
the most concise and correct method is still uncertain.

And there is still work to be done on creating the complex
type systems required to embed all required mathematical
logic in a succinct way. Attempts like Agda work well, but
are very limited in how they determine whether a program
terminates or not, which means a lot of facts can’t be easily
proven.

But hopefully this will improve; after all, applications like
this are still in their infancy and are evolving quickly.


