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 Throughout the history of Western Music, music theorists have been trying to develop 

alternative ways to tune musical instruments to achieve a more pleasant playing and listening 

experience. These experiments resulted in different tuning systems, i.e. temperaments, which 

determines the frequency of each note.  

Among various tuning systems, three temperaments were commonly used in Western 

Music at some point of time: Pythagorean Tuning, Quarter Comma Meantone Temperament, and 

12 Tone Equal Temperament[1], in chronological order of each temperament’s dominant time 

period.  

In this paper, we will use algebra to examine these three tuning systems. We will 

consider their construction and interval ratios, and discuss some strengths and weaknesses of 

each tuning system.   

Musical Background 

Just Intervals. Music, especially melodic music, is carried by soundwave. Therefore, like any 

repeated signal with a consistent frequency, musical pitches contain harmonic series, waves with 

frequencies that are integer multiples of the base frequency. Theoretically, there are infinite 

harmonics of a given base frequency, but in practice, harmonics generally get weaker as they get 

higher, and become unobservable after a certain point. The ratios between the harmonics are 

called “just intervals”. Because harmonics are always integer multiples of the base frequency, 

just intervals always from rational ratios, and because the harmonic series is theoretically 

infinite, there are theoretically infinitely many just ratios. Ancient Greeks discovered that two 

pitches whose base frequencies form simple integer ratios sound pleasant when played together, 



which is consistent with the popular mathematic system that only includes rational numbers. 

Today we understand that these pitch combinations sound pleasant because they form simple just 

intervals, and their harmonic series naturally overlaps with each other [2]. Some important just 

intervals for this paper are Perfect Fifth (3:2), Major Third (5:4), and Octave (2:1) 

Octave. Due to the simplicity of the 2:1 ratio, pitches that are octaves apart have highly 

overlapping harmonic series and are often considered to be the same note. Therefore, a pitch 

with a base frequency of 220 Hz is consider the same note as pitches with the base frequencies of 

440 Hz (1 octave higher), 880 Hz (2 octaves higher), 1760 Hz (3 octaves higher), etc.  

12-Note System. In standard Western Music practice, there are 12 distinct notes1, each a 

semitone apart, as illustrated in the keyboard layout in Fig.1. The three just intervals discussed 

above are assigned as such: a Perfect Fifth is 7 semitones apart (C-G or E♭-B♭), a Major Third is 

4 semitones apart (C-E or E♭-G), and an Octave is 12 semitones apart (C-C or E♭-E♭).  

Pythagorean Tuning 

 Used in many Ancient Greek music, this tuning system is widely attributed to the famed 

Mathematician and Philosopher, Pythagoras.  

Construction. In Pythagorean Tuning, the just intervals of the Octave (2:1) and the Perfect Fifth 

(3:2) are preserved, meaning that every note is constructed from these two intervals. Since a 

Perfect Fifth is 7 semitones apart, and an Octave is 12 semitones apart, and the numbers 7 and 12 

are coprime, we can derive all 12 notes by stacking Perfect Fifths together. The construction 

process of Pythagorean tuning can be illustrated as:  

 
1 Notably, the Pythagorean tuning was widely attributed to Pythagoras (c. 570 BC – c. 495 BC), who died before the 
earliest written record that established the concept of having 12 distinct notes (Elementa Harmonica by 
Aristoxenus). Nonetheless, in this paper we will mainly discuss the performance of each tuning system for today’s 
music, so for the purpose of this paper, we will assume that having 12 distinct notes is a well-established fact. 



1. Assign a frequency to a base note;  

2. Stack the 3:2 ratio to get new pitches that are a Perfect Fifth apart;  

3. Use the 2:1 ratio to bring the pitches to different Octaves;  

4. Repeat the process 6 times above and 5 times below.  

While deriving frequencies for new pitches, we multiply the ratios while deriving higher 

pitches, and divide by the ratios for lower pitches. For example, if we start with the note A, we 

multiply the frequency of 3:2 to derive the pitch that is a Perfect Fifth above, E; and we divide by 

the frequency of 3:2 to derive the pitch a Perfect Fifth below, D.  

 

 

Fig. 1 Keyboard Layout 



 If we start with D as our base note and through these steps, we can obtain the following 

table:  

Table 1 Pythagorean Tuning Table 

 Then after rearrangement, we will get:  

Table 2 Pythagorean Tuning Table in Order 

Advantages: The stacking process is simple and intuitive. Also, all ratios we have obtained are 

rational, i.e. all just intervals. This is consistent with Pythagoras’ philosophy that only rational 

numbers exist.  

Disadvantages: While deriving the frequencies, we stopped at the note E♭. However, if we step 

down one more Perfect Fifth, we can calculate the ratio of A♭ as:  

256

243
×
2

3
× 2 =

1024

729
= 1.4047 

whereas the G♯ we calculated has a ratio of  

729

512
= 1.4238 

which means that G♯ and A♭ are two different notes, despite in the 12-note system, they are 

enharmonic equivalents, i.e. they occupy the same key in the keyboard.  

In fact, the interval between G♯ and E♭ is not a Perfect Fifth. The ratio of this interval can 

be calculated as 



256

243
× 2 :

729

512
=
262144

177147
= 1.4798 

whereas a just Perfect Fifth has a ratio of  
2

3
= 1.5.  

 This interval is formally called the Pythagorean Diminished Sixth (due to note spelling, 

G♯ and E♭ should theoretically be a sixth apart) but is more commonly called the Sour Fifth. It is 

significantly flatter than the just Perfect Fifth, and is perceived as quite dissonant. Therefore, 

although very elegant, the Pythagorean tuning have some severe disadvantages.  

Quarter Comma Meantone Temperament 

 In the sixteenth and seventeenth century, the most common tuning system is Quarter 

Comma Meantone Temperament. This temperament was used by some of the most well-known 

composers such as Bach, Mozart and Beethoven. For brevity, this will be referred to simply as 

the “Meantone Temperament” in the following.  

Construction. In Quarter Comma Meantone Temperament, the just intervals of the Octave (2:1) 

and the Major Third (5:4) are preserved, meaning that every note is constructed from these two 

intervals. Since a Perfect Fifth is 4 semitones apart, and an Octave is 12 semitones apart, and 4 

divides 12, we cannot simply stack major thirds to get all 12 notes. Instead, the music theorists 

first derive the ratio of a Meantone Perfect Fifth by the following relation:  

1. Stack 2 Octaves with a Major Third to get 12 × 2 + 4 = 28 semitones;  

2. Stack 4 Perfect Fifths to get 7 × 4 = 28 semitones;  

3. Calculate the Meantone Perfect Fifth by:  

𝑥4 = 22 ⋅
5

4
 ⇒  𝑥 = √5

4
 

Then we can derive all 12 notes by a similar stacking process as Pythagorean Tuning, the 

difference being instead of using 3:2 as the ratio for Perfect Fifth, we are using √5
4

:1. Starting 



with D as the base note (the most common practice with Meantone Temperament), the resulted 

table would be:  

Table 3 Meantone Temperament Table 

 Rearrange to get:  

Table 4 Meantone Temperament Table in Order 

Advantages: The Meantone Temperament preserves the just Major Third, which is a sound 

typically associated with warmth. Therefore, musicians who play with this temperament can 

utilize this interval to convey a very warm feeling.  

Disadvantages: Like in Pythagorean Tuning, if we step down one more Meantone Perfect Fifth 

from E♭, we can calculate the ratio of A♭ as: 

8

5√5
4 ×

1

√5
4 × 2 =

16

5√5
= 1.4311 

which is also inconsistent with the 
5√5

8
= 1.3975 we calculated for G♯ above, making the 

enharmonic equivalents still inconsistent.  

 The interval between G♯ and E♭ can be calculated as:  

8

5√5
4 × 2 :

5√5

8
=

128

25 × 53/4
= 1.5312 



whereas a just Perfect Fifth has a ratio of  
2

3
= 1.5, and a Meantone Perfect Fifth has a ratio of 

√5
4

= 1.4953.  

 This interval is commonly referred to as a Wolf Fifth. The Wolf Fifth is significantly 

sharper than a just Perfect Fifth, whereas a Meantone Perfect Fifth is virtually indistinguishable 

from a just Perfect Fifth.  

 Moreover, if we calculate the ratio of each semitone, we can get two different intervals:  

Table 5 Meantone Temperament Semitone Ratios 

  The larger interval is called a “diatonic semitone” whereas the smaller interval is called a 

“chromatic semitone.” Here the diatonic semitone is repeated at C♯-D-E♭ and G♯-A-B♭, two 

asymmetric positions. This means that sequence of semitone intervals is unique for each key, 

making each key sound different.  

 In his 1785 book Ideas Towards an Aesthetic of Music, Christian Friedrich Daniel 

Schubart dedicated 4 pages to describe the characterization of each musical key [3]. For 

example, when describing the color of B major, he wrote:  

“B major, strongly colored, announcing wild passions, made up of the crudest colors. 

Anger, rage, jealousy, fury, desperation, and every burden of the heart lies in its sphere.”  

While discussing the keys, he skipped over the key of F♯ Major. This is because the 

Meantone Temperament has rendered this key practically unusable [4], for there are many 

clashing intervals in the key. Therefore, Meantone Temperament also has some major 

disadvantages.  



12 Tone Equal Temperament 

 12 Tone Equal Temperament is the most common tuning system of today. It is the default 

tuning system of every tuner, every musical instrument, and every musical software.  

Construction: Instead of trying to preserve just intervals, 12 Tone Equal Temperament keeps 

the same ratio for all 12 semitones. Therefore, the ratio of each semitone can be calculated by:  

𝑥12 = 2 ⇒  𝑥 = √2
12

  

therefore, we get the following tuning table:  

Table 6 12 Tone Equal Temperament Table 

Advantage: The main achievement of 12 Tone Equal Temperament is consistency. First, we 

now have the consistency between enharmonic equivalents. Now, G♯ and A♭ are the same note, 

which reflects how they take up the same key on a keyboard. In addition, we have the 

consistency between intervals. If two intervals include the same number of semitones, they will 

sound the same, and there should not be any Sour Fifth or Wolf Fifth. Finally, the keys are also 

consistent in 12 Tone Equal Temperament. Because all the semitones are the same interval, each 

sequence of semitone yields the same result.  

Disadvantage: By taking the 12th root of 2, we lost any just interval other than the Octaves. 

Because any non-octave-based interval is irrational, although in theory there are infinitely many 

just intervals, only the Octaves are truly “in tune” in 12 Tone Equal Temperament. Secondly, we 

have lost the characterization of the keys. Although the keys are inconsistent in the Meantone 

Temperament, each key is unique and flavorful, and composers were able to choose the key that 



best conveys their emotion. In today’s tuning system, the subtlety is simply lost, and every key 

would sound the same.  

Conclusion 

 The story of the tuning system is not a story about perfection. We did not arrive at a 

perfect tuning system; 12 Tone Equal Temperament has many flaws after all. Nor is it a story 

about degeneracy. The tuning system did not evolve to become worse, since we have solved 

many problems with 12 Tone Equal Temperament. Rather, it is a story about compromise. It is a 

story about how we gave up our obsession with the “purity” of mathematical forms or interval 

ratio to arrive at a tuning system that is compromised yet consistent.  
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