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Introduction 

 The tessellation is the covering of a plane using geometric shapes without gaps or 

overlaps. First used by Sumerians in building walls decorations (Pickover, 2009), tessellations 

appear in various natural phenomenon and have been applied by artists and architects. In 

mathematics, researchers have regarded tessellations as a physical link between mathematical 

science and real-world life. In addition to the Euclidean space tessellations, mathematicians have 

generalized to higher dimensions and studied the internal abstract structures. In this paper, I will 

present the definition and categories of tessellations, the seventeen wallpaper groups related to 

the mathematical research of tessellations, and their connections with some previous topics 

covered in the Math 400 class throughout the whole semester. 

 

Definition and Categories 

 Mathematically, a tessellation is a partition of an infinite space into pieces having a finite 

number of distinct shapes. These geometric shapes are called tiles. In other words, the tiles cover 

an Euclidean or non-Euclidean plane with no gaps or overlaps. Based on the shapes of the tiles, 

there are three different categories of tessellations. A regular tessellation is made up of repetitive 

regular polygons of the same size and position. There are only three types of regular tessellations 

consisting of equilateral triangles, squares and regular hexagons, respectively. A vertex is 

defined as the point where the shapes join together. A semi-regular, or an Archimedean 

tessellation, is made up of more than one type of regular polygons in an isogonal arrangement. 

That is, The pattern at each vertex is identical (What is a tessellation?, 2018). There are right 

semi-regular tessellations, as are shown in Figure 1. The irregular tessellation has fewer 
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restrictions; it could be made up of any kind of geometric shapes, given that the shapes do not 

overlap or leave space.  

 

 
 Figure 1: Eight Semi-regular Tessellations 

 

Isometries of the Euclidean Plane and the Wallpaper Groups 

 When using a single tile to form a complete tessellation, the tile is always transformed in 

various ways, while some certain properties preserve. In an Euclidean plane, there are four ways 

of transforming the plane, called isometries of the Euclidean plane. These could be explain in. 

both mathematical and descriptive languages. 

 Mathematically, let v  be a vector in 𝑅2, and let p be a point in an Euclidean plane. The 

transformation, T, is a function such that 𝑇(𝑝)  =  𝑝 + 𝑣. More visually, a transformation is to 

shift the plane in the direction V. Now let 𝜃 𝜖 (0, 2𝜋). Consider the x-y coordinate plane, and let 
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𝑃(𝑃𝑥, 𝑃𝑦) be an arbitrary point in the plane. A rotation around the origin , R, is denoted as 

𝑅(𝑃) = (
𝑐𝑜𝑠 𝜃 − 𝑠𝑖𝑛 𝜃
𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃

) [
𝑃𝑥
𝑃𝑦

]. A rotation around a point other than the origin could be 

accomplished by first translating the point to the origin, then performing the rotation. Let c be 

another point of the plane and let v be a unit vector in 𝑅2. For an arbitrary plane p,  the reflection, 

F, is denoted as 𝐹(𝑝) = 𝑝 − 2𝑡𝑣, where 𝑡 = (𝑝 − 𝑐) ∙ 𝑣, the dot product of (p-c) and v. Finally, 

the glide reflection is a combination of the transformation and the reflection. Let vector w 

represents the direction the plane transforms and let v represents the direction the plane reflects, 

the glide reflection, G, is denoted as 𝐺(𝑝)  =  𝑤 + 𝐹(𝑝). Figure 2 gives a visualization of the 

four isometries of the Euclidean plane. 

 
Figure 2: Isometries of the Euclidean Plane 

  

 Mathematicians have found that when using isometries to form a tessellation, there are 

only 17 different combinations. Each combination, called a wallpaper group, is formally defined 

as a type of topologically discrete group of isometries of the Euclidean plane that contains two 

linearly independent translations. For example, the group p1 could be formed by single 

transformations, while the group p2 shows a combination of translations and reflections. 
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Figure 3: (Left) Wallpaper Group p1; (Right) Wallpaper group p2 

   

Tessellations and Fractals 

In Euclidean geometry, a fractal is a subset of Euclidean spaces such that all geometric 

figures or curves are self-similar. Fractals are frequently used in modeling structures in which 

similar patterns recur at smaller scales. Tessellations and fractals both possess the property of 

self-similarity; however, not all tessellations can form fractals. Specifically, such tessellations are 

called reptiles, shapes that can be dissected into smaller pieces of the same shape. A reptile 

fractal is formed by dissecting the reptile into smaller pieces, removing one or more copies of the  

subdivided shape, and repeating this process infinitely. The Sierpiński Carpet, named after Polish 

mathematician Wacław Sierpiński, is an example of reptile fractals. Figure 4 shows a complete 

process of constructing a Sierpiński Carpet. To begin, one starts with a square and cuts it into 9 

identical pieces in a three by three grid. The central sub-square is then removed. This process is 

applied repeatedly to the remaining sub-squares, ad infinitum. Finally, one could claim that the 

area of the carpet is 0. A proof of this claim could be reached using the concept of the limit: 

 Assume that the area of the original square if 1. Then, after the first iteration, the area of 

the remaining part is 
8

9
. Thus, the area of the carpet after the ith iteration is (

8

9
)𝑖 , with 

lim
𝑖→∞

(
8

9
)

𝑖
=  0 (arXiv, 2012).  
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                Figure 4: The Process Of Forming a Sierpiński Carpet 

 

Tessellations and the Golden Ratio 

 Mathematically, two quantities are in the golden ratio if the ratio of the larger to the 

smaller is equal to 
1+√5

2
, represented as the Greek letter ∅. The golden ratio appears in both 

natural phenomenon and man-made art products. The Penrose tiling is closely connected with the 

golden ratio as well. 

 Named after English mathematician and physicist Roger Penrose who investigated it, a 

pair of the Penrose tiling consists of two kinds of triangles, which could be combined together to 

form either a group of a ‘kite’ and a ‘dart’ or a pair of a ‘fat’ rhombus and a ‘thin’ rhombus.  

Figure 5 shows an example of such combinations.  

https://en.wikipedia.org/wiki/File:Sierpinski_carpet_1.svg
https://en.wikipedia.org/wiki/File:Sierpinski_carpet_2.svg
https://en.wikipedia.org/wiki/File:Sierpinski_carpet_3.svg
https://en.wikipedia.org/wiki/File:Sierpinski_carpet_4.svg
https://en.wikipedia.org/wiki/File:Sierpinski_carpet_5.svg
https://en.wikipedia.org/wiki/File:Sierpinski_carpet_6.svg
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Figure 5: (Left) A Kite and A Dart; (Right) Two Rhombuses          Figure 6: A Regular Pentagon                                      

 

 For each of the kite and the dart, the ratio of the long side to the short side is exactly the 

golden ratio, ∅. Accordingly, one could find a group of kite and darts in a regular pentagon, as is 

shown in Figure 6. In this case, the area of the ‘kite’ to that of the ‘dart’ is the golden ratio as 

well (How to make a Penrose tiling, n.d.). In addition, for each rhombus shown in Figure 5, the 

ratio of the long diagonal to the short diagonal is the golden ratio as well. If one repeat the two 

combinations in an infinite plane to create a tessellation, the ratio between the number of each 

type of tiles is used, both in the case of the kite and dart combination and the rhombuses, 

approaches the golden ratio, ∅. That is, 

lim
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑖𝑙𝑒𝑠→∞

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑘𝑖𝑡𝑒𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑟𝑡𝑠
 = lim

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑖𝑙𝑒𝑠→∞

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 ′𝑓𝑎𝑡′ 𝑟ℎ𝑜𝑚𝑏𝑢𝑠𝑒𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 ′𝑡ℎ𝑖𝑛′ 𝑟ℎ𝑜𝑚𝑏𝑢𝑠𝑒𝑠
  =  ∞ 

This is because of one unique property of tessellations: the placement of one type of tiles over 

another depends only on the geometric shapes of the tiles themselves instead of the tessellation 

designer (Schultz).  Additionally, one may tile each Penrose tile using smaller tiles of the same 

shape infinitely; this self-similarity shows that a Penrose tiling is a kind of fractals as well. 

 

Conclusion: 

 Tessellations have connect abstract mathematical studies of geometry with visualized 

representations that could be found in everyday life. While certain tessellations may look 

complex and chaotic, some internal structures and characteristics always possess. This paper 

gives a brief introduction to how mathematics is used to describe, to investigate and to generate 
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tessellations. For future studies, the technique of computer science and image processing could 

be employed in designing decorative tessellations as well as studying more complex tessellations 

in a mathematical context. 
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