PARADOX

Chi-Kwong Li

A 'VISUAL' PARADOX: ILLUSION

FALSIDICAL PARADOX

- A proof that seems right, but actually it is wrong!
- Due to: Invalid mathematical proof logical demonstrations of absurdities

Example 1: 1=0 (?!)

- Let $\mathrm{x}=0$
- $x(x-1)=0$
o $x-1=0$
- $\mathrm{x}=1$
- $1=0$

EXAMPLE 2: THE MISSING SQUARE (?!)

Mathematical Induction

- The principle of mathematical induction:

For a statement involving positive integer n.
a) check that the statement is true for $n=1$.
b) check that if the statement is true for $\mathrm{n}=\mathrm{k}$, it will ensure that $\mathrm{n}=\mathrm{k}+1$ is true. Then the statement is true for all positive integer n.

- Suppose there are n balls in a box such that. If you are ensured that you pick a ball from the box with a certain color, then the next ball must be of the same color. The first ball you pick is a red ball. Then

A WRONG INDUCTION PROOF

- If there are $n(>0)$ people in the this room, then they are of the same gender.

Proof by Induction

- If there is one person only, then the statement is true.
- We show that if k people in this room have the same gender, then $\mathrm{k}+1$ people in this room will have the same gender.
Proof. For k+1 people, ask one person to leave the room. Then the k remaining people have the same gender.
Now, ask the outside person to come back, and ask another person to leave the room. Then again the k remaining people have the same gender. So,

But we know, not all people in this room have the same Gender!

- What is wrong?

BARBER PARADOX
 (BERTRAND RUSSELL, 1901)

- Once upon a time... There is a town...
- no communication with the rest of the world
- only 1 barber
- 2 kinds of town villagers:
- Type A: people who shave themselves
- Type B: people who do not shave themselves
- The barber has a rule:

He shaves Type B people only.

QUESTION:

WILL HE SHAVE HIMSELF?

- Yes. He will!
- No. He won't!

What's

- Which type of people does he belong to?

ANTINOMY

$\circ p->\mathbf{p}^{\prime}$ and $\mathbf{p}^{\prime}->\mathrm{p}$
$\circ p$ if and only if not p

- Logical Paradox
- More examples:
- (1) Liar Paradox
- "This sentence is false." Can you state one more example for that paradox?
- (2) Grelling-Nelson Paradox
- "Is the word 'heterological' heterological?"
- heterological(adj.) = not describing itself
- (3) Russell's Paradox:
o next slide....

RUSSELL'S PARADOX

- Discovered by Bertrand Russell at 1901
- Found contradiction on Naive Set Theory

If we define all mathematical entities as sets, and assume that there is a universal set U containing every sets.

Problem. Define a set R to be the elements in U such that x is not an element x .
Question: Is R an element of R ?

BIRTHDAY PARADOX

- How many people in a room, that the probability of at least two of them have the same birthday, is more than 50% ?
- Assumption:

1. No one born on Feb 29
2. No Twins
3. Birthdays are distributed evenly.

Formula: ???

3 Types of Paradox

- Veridical Paradox: contradict with our intuition but is perfectly logical
- Falsidical paradox: seems true but actually is false due to a fallacy in the demonstration.
- Antinomy: be self-contradictive

ADDITIONAL PARADOX

- Surprise test paradox

The instructor says that he will give a surprise test in one of the lectures. Then

- Zeno's paradox (Zeno of Elea, 490-430 BC) In a race, the quickest runner can never overtake the slowest, since the pursuer must first reach the point whence the pursued started, so that the slower must always hold a lead.

HOMEWORK

1. People from H village always tell the truth; people from L village always lie. If you have to decide to go left or go right to visit the H village, and seeing a person at the intersection who may be from H village or L village. What question should you ask the person to ensure that you will be told the right direction to the H village.
2. Consider the following proof of $2=1$

- Let $\mathrm{a}=\mathrm{b}$
- $a^{2}=a b$
- $a^{2}-b^{2}=a b-a b^{2}$
- $(a-b)(a+b)=b(a-b)$
- $a+b=b$
- $\mathrm{b}+\mathrm{b}=\mathrm{b}$
- $2 \mathrm{~b}=\mathrm{b}$
- $2=1$

Which type of paradox is this?
Which part of the proof is wrong?

