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Notes on Advanced Linear Algebra

Chi-Kwong Li

Complex vectors and complex matrices

In applications and theoretical development, it is important to study complex vectors and

matrices. Let N,Z,Q, R, C be the set of natural numbers, integers, rational numbers, real

numbers, complex numbers, respectively.

1.1

Complex numbers: Basic operations

A complex number has the standard form z = a + ib with a,b € R, and we have the

complex plane representation. The complex conjugate of z is Z = a — 1b.

For 21,2z, € C, one can perform addition z; + 29, subtraction z; — 2, multiplication

2129, and division z1/zy provided zo # 0.

The size, modulus, or norm of z = a + b is |z| = Va? + b2, the argument of z is
6 € [0,27) or R with cosf = a/|z| and sinf = b/|z|. Note that 2z = zz = |2]°.

The polar form of z is z = |z|(cos 0 + isin @) = |z[e?. If 21 = |z1]e? and 2z, = |2|e??,
then 2120 = |21]|22]e’@+%2) where we may replace 0; + 0y by 6; + 0, — 27 in case
01 + 0y > 21, If 25 # 0, then 21/20 = (]21|/]22])e?* %) where we may replace 6, — 6,

by 61 — 05 4+ 27 in case #; < 0s.



1.2 Real or Complex Vectors and Matrices

Let F =R or C, and F" be the set of column vectors with n co-ordinates.

I hn
e lfx=| : |,y=1] : | € F", and v € R, then the addition and scalar multiplication

are defined by
T+ Y1 Y1
X+y= : and yx = : ,
Tn + Yn VTn

respectively.

e The set " form a vector space under addition and scalar multiplication.

The addition is closed, associative, commutative; there is a zero vector 0 € F™ such that
x + 0 = x; for any x € F” there is an additive inverse —x such that x + (—x) = 0; the scalar
multiplication always yields an element in C™ and satisfies 1 (y2x) = (7172)x and 1x = x for

any 71,7 € F and x € F".
Let M, (F), M,,.(F) be the set of n x n and m x n matrices over F, respectively. We
write M, M, , if F = C.

o If A = (%1 j) € Myin(F) with Ay € M,,(F) and Ay € M,(F), we write A =
2
A @ As.

e ', A denote the transpose of a vector z and a matrix A.

e For a complex matrix A, A denotes the matrix obtained from A by replacing each

entry by its complex conjugate. Furthermore, A* = (A)?.

o If A= (a;;)ismxn,and B = (bj)is n X p, then C' = AB = (¢;,) is m x p such that
Cite = Qitbig + -+ Qinbpy for 1 <i<m, 1 <k <p.

o If A = (A;;) is such that A;; is m; x n; for 1 <i <r,1 <j <s, and B = (Bj;) is
such that By, is nj x py for 1 < j <sand 1 <k < g, then C = AB = (Cy,) such that
Oik:AilBlk"i_""‘_AisBsk fOI'lSZST,lSk‘Sq

o If A€ M,,, has columns uy,...,u, and B € M, , has rows vi,... vl then

AB = i uivz-.
j=1



1.3 Basic concepts and operations for complex vectors & matrices

We can extend the concepts on real vectors and real matrices to complex vectors and complex

madtrices.

e Linear equations, solution sets, elementary row operations.
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Example. Consider Az = b with A = (2 —ih

), b = (1,4)". Consider h such that

the system is solvable.

e Column space, row space, null space, and rank of a complex matrix.
Determine h in the above example so that A has rank one or rank 2. Also, determine
bases for the column space, row space, and null space of A for each choice of h.

e Determinant, eigenvalues, eigenvectors, diagonal form.

Compute the determinant of A above. Find the eigenvalues, eigenvectors of A if h = 1.

e To solve for eigenvalues and eigenvectors,
1) Solve the characteristic equation det(A — A) = 0 to find the eigenvalues.
Note that det(A] —A) = (A—=Ay) - - - (A—A,) by the Fundamental Theorem of Algebra.
2) For each root \; of det(Al — A) = 0, find a basis for solution set of (\;I — A)x = 0.

3) There are n linearly independent eigenvectors z1, . . ., x, corresponding the Aq, ..., A,
if and only if AS = SD, where S has columns z1,...,z,, and D = diag (A1,..., ),
so that ST'AS = D. We say that A is diaonalizable.

Note that if A has n distinct eigenvalues, then A is diagonalizable because each eigen-

value has at least one eigenvector, and these eigenvectors are linearly independent.

For example, A = (8 [1)) is not diagonalizable.

e Vector spaces, basis, change of bases.

The space C™ has dimension n, a linearly indpendent set (or a spanning set) {v, ..., v,}
of n vectors form a basis. This happen if and only if the matrix S with column vy, ..., v,

is invertible, equivalently, det(S) # 0.

e Linear transformations, range space, kernel.

A matrix A € M,,,, define a linear transformation 7' : C* — C™ such that T'(z) = Az
for any x € C". The column space of A is the range space, the null space of A is the

kernel.



1.4 Inner product, orthonormal sets, Gram-Schmidt process

Recall that the inner product of u,v € C" is (u,v) = v*u and satisfies the following:

(1) For any u,u,us,v € C" and a,b € C, (auy + bug,v) = a(uy,v) + b{ug, v)

(2) For any u,v € C", (u,v) = m

(3) For any u € C", (u,u) > 0, the equality holds if and only if u = 0.
The Euclidean norm (a.k.a. fy-norm) of v € C" is defined by |v|| = (v*v)"/? and satisfies
the following.

(a) For any v € C™, ||v]| > 0. ( positive definiteness)

The equality holds if and only if v = 0.
(b) For any a € C and v € C, ||av|| = |al||v||. (absolute homogeneity)
(c) For any u,v € C", ||lu+v|| < ||ul| + ||v||. (triangle inequality)

The equality holds if and only if one vector is a nonnegative multiple of the other.

Condition (c) follows from

(d) [{u,v)| < |lu|l||v]]. (Cauchy-Schwartz inequality)

The equality holds if and only if one vector is a multiple of the other.

A set of vectors {uy,...,uy} € F” is orthonormal if (u;, u;) = ¢;;, the Kronecker delta
such that 0,; = 1 and &;; = 0 if 7 # j. Equivalently, U*U = I,,, where U € M,, ,,,(F) has

columns uq, ..., Up,.

Note: An orthonormal set {uy,...,u,} C F" is always linearly independent so that m < n.
A vector v is a linear combination of w4, ..., u,, if and only if v = ayu; + - - - + a,,u,, with
aj = (v,u;) for yj=1,...,m.

Gram-Schmidt Process Let vy, ..., v, € F" be linearly independent with m < n.

Set uy = vy/[|v1]].
For k > 1, let fi, = vy — (@yuq + - - - + ag_qug—1) with a; = ujvy and vy, = T/ fxl-

Then {uy,...,ux} is an orthonormal basis for span{vy,..., v} for k=1,... ,m.
If m < n, one may further extend {uy,...,u,} to an orthonormal basis {u1, ..., u,}.
To see this, one can apply the Gram-Schmidt process to the basic columns of the rank n

matrix [uy -« - Uy, €1 €yl

A set {uy,...,u,} is an orthonormal basis for F" if and only if the matrix U with columns
Uy, ..., u, satisfies U*U = I,,. When F = C, the matrix U is called a unitary matrix; when

F = R, the matrix U is called an orthogonal matrix.

We will denote by U, (FF) the set of matrices U € M, (F) such that U*U = I,.



Exercises

1 2 3 4
1. Let A = 21 6 147 1—1
14+2: 64+2¢ 447 5—1

(a) Reduce the matrix to row echelon form, and find the rank of A.

(b) Find bases for the row space, column space, and null space of A.

(c) Solve the equations Az = (2,2 —i,3 —i))" and Az = (1,0,0)".
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2. Let A = <_2 z)

(a) Find the eigenvalues Aj, Ao of A, and the corresponding unit eigenvectors uy, us.
(b) Let U = [uy uy]. Show that U*U = I, and AU = UD with D = diag (A, A2).
(c) Show that A* = UD*U* = Mw v + Nsvyws for all (positive or negative) integers k

3. Suppose A = SDS~! € M, such that D = diag (A, ..., \,), and where S has columns

T1,..., 2T, and S™! has rows yt, ... yl.
1 ifi=j, o
(a) Show that ylz; = d;; = .. °7 [Hint: Consider S~'5]
0 ifi##j.
(b) Show that A* = SDkS™! = > i1 Asx;yh for every positive integer .

c) If A is invertible, show that A¥ = SDFS=1 =35"" Mo for every negative integer
J=17"9"79]

k.
(d) For any polynomial f(z) = 2™ + -+ + ag, let f(A) = anA™ + -+ a1 A+ apl,.
Show that f(A) =27, f(N)z,ys.

1 i ¢ 0 0

4. Suppose A = ( ) and B=1[2 2 0
0 2 4

1 1 3

(a) Show that for any C' € My 3, there is X € M3 such that AX +C = XB.

[Hint: Let X = [x;;] and set up a linear system of 6 equations to solve for [z;;] for a

given C']

(b) Suppose T = (gl g) for some matrix C' € My 5. Show that there is X € My

such that

I, X

TSzﬂA@&ﬁS:(Olg

>. Find S~! and conclude that S™'T'S = A ® B.
(c) Show that conclusion (a) may fail if A and B share a common eigenvalue.
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D.

6.

7.

10.

11.

Let w,vy,v9 € C", a,b € C. Show that (u,avy + bvy) = a{u, vy) + b{u, vy).
Let S = {vy,...,ut} € C" be an orthonormal set. Show that S is linearly independent.

Let u,v € C". Prove the Cauchy-Schwarz inequality |(u,v)| < ||u||||v]|, and the triangle

inequality ||u + v|| < [Jul| + ||v]|, and determine the conditions for equality.

Hint: Let u,v € C" be nonzero. Consider e¢? such that (u,e®v) = |{u,v)| so that

(€v,u) = (u,e®v) = |{u,v)|. Then for any t € R,
0 < ||u+tev|* = at® + 2bt + ¢

with a = ||v||?, ¢ = |Ju]|?,b = |{u,v)|. Then argue that b* < ac to prove the inequality,

and argue that the equality hold if and only if u + te®®v = 0 for some ¢ € R.

Let vy = (1,4, 1), v9 = (1,4, 2)".

(a) Apply Gram-Schmidt process to the vectors vy, vs to get an orthonormal pairs

Ui, U.
(b) Let A = [u; ug]. Solve the system A*z = (0,0)".

(c) Determine uz such that {u, us, u3} is an orthonormal basis for C.
Let uw = (1,2i,1 —¢)". Find a unitary U with u/||u|| as the first column.

Suppose A € M,, ,, with m < n with rank m. Show that A = PU such that P € M, ,

has orthonormal columns, and U is upper triangular.

1 1—¢ 2+
Let A=|1 1+¢ —2+i]. Write A = UR for an upper triangular matrix R.
1 1 2

[Apply Gram Schmidt to the columns of A to get a unitary matrix U]



2 Unitary equivalence and unitary similarity

Two matrices A, B € M, ,, are unitarily equivalent if there are unitary U € M,, and V € M,,
such that A = UBV. Two matrices X,Y € M, are unitarily similar if there is a unitary
W € M, such that X = W*YW. It is easy to show that these are equivalence relations,
that is, reflective, symmetric and transitive.

In this chapter, we consider different canonical forms of matrices under unitary equiva-

lence and unitary similarity.

2.1 Singular value decomposition

Lemma 2.1.1 Let A be a nonzero m x n matriz, and u € C™,v € C" be unit vectors such
that |u*Av| attains the mazimum value. Suppose U € M,, and V € M, are unitary matrices
u*Av 0 )

with u and v as the first columns, respectively. Then U*AV = ( 0 A
1

Proof. Note that the existence of the maximum |u*Av| follows from basic analysis result.
Suppose U*AV = (a;;). If the first column z = U*Av = (a1, ..., am1)" has nonzero

entries other than ay, then @ = Uz/|Uz|| = Ux/||z|| € C™ is a unit vector such that

wAv = o' U Av/|[z]| = 2" /|[z]) = |zl > Ve * = |an| = |u” Av],

which contradicts the choice of u and v. Similarly, if the first row y* = 2* AV = (aq1, ..., a1,)

has nonzero entries other than a1, then v = Vy/||Vy|| = Vy/|ly|| is a unit vector satisfying

w A = w AVy/llyll = y*y/lyll = llyll > lan?,

which is a contradiction. The result follows. O

Theorem 2.1.2 Let A be an m X n matriz of rank r. Then there are unitary matrices

UeM,,,V eM, such that
j=1

As a results, if U and V' have columns uy,...,u, € C™ and vy,...,v, € C",

T
A= E S50V
=1

Proof. We prove the result by induction on max{m,n}. By the previous lemma, there are
uAv 0

unitary matrices U € M,,,V € M, such that U*AV = ( 0 A
1

). We may replace U by
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e®U for a suitable 6 € [0, 27) and assume that u* Av = |u* Av| = s;. By induction assumption
52
there are unitary matrices Uy € M,,,—1, V1 € M,,_1 such that U A;V; = S3 . Then

([1] ® Uy)U*AV ([1] @ Vi) has the asserted form, where r is the rank of A. O

Remark 2.1.3 The values s; > --- > s, > 0 are the nonzero singular values of A, which

2

are s3,..., s> are the nonzero eigenvalues of AA* and A*A. The vectors vy,...,v, are the

right singular vectors of A, and uy,...,u, are the left singular vectors of A. So, they are

uniquely determined. We will denote the singular values of A by s1(A) > s2(A) > ---

Here is another way to do the singular value decomposition. Let {vy,...,v,} C C"
be an orthonormal set of eigenvectors corresponding to the nonzero eigenvalues s?, ..., s

of A*A. Let u; = Av;/s;. Then {uy,...,u,} € C™ is an orthonormal family such that
A= Z;:1 Sjlle;<

Similarly, let {uy,...,u,.} € C™ be an orthonormal set of eigenvectors corresponding to
the nonzero eigenvalues s7,...,s? of AA*. Let v; = A*u;/s;. Then {vy,...,v,} CC"is an
orthonormal family such that A =37 | s;u;v;

If A € M,,,, then one can find real orthogonal matrices U € M,, and V € M, with
columns wy, ..., uy, and vy, ..., v, such that A= U (Y 7_, s;E)V* = Y0 s;u,v7

We may extend the definition of inner product (z,y) and inner product norm ||z|| for

vectors x,y € F" to matrices by

Za” = tr(AB*) and  ||A]lp = (4, A)"/?

if A= (a;;),B = (bij) € M. ||AllF is called the Frobenius norm or fy-norm of A.
Theorem 2.1.4 Suppose A € M,,,,(F) has rank r and singular value decomposition A =
Z;Zl Sju; vy, where sy > -+ > 5, >0 {uy,...,u.} CTF" {vy,...,v,.} CF" are orthonormal

sets. For any positive integer k < r, A = Z§:1 S5V satisfies
I|A = Ail|lr < ||A = X||p for all X € M,, ,, with rank at most k.

If £ > r, then no approximation is needed.

Proof. Let B has rank k such that [|[A — B||F is minimum among all B with rank at
most k. Then there are unitary P € M, and ) € M, such that PBQ = Zle b;Ej; with
bj =s;(B) for j =1,... k. Since [|[PXQ|r = || X| r, if PAQ = (a;;), then

IA = Bl[p = 1P(A = B)Q|F = ZI%!“Z!% bif* + D lagl.

i#£j Jj>k
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Let C = P(A— B)Q = (¢;j). If there is 1 <4 < k such that ¢;; # 0, we may change the
(i,7) entry of PBQ to a;; to get a rank at most r matrix B so that |A — By is smaller.
Similarly, if there is 1 < 7 < k such that such that ¢;; # 0, we may change the (7, j) entry
of PBQ to a;; to get a rank at most k matrix B so that |A — B|| is smaller. Hence, at the

k
minimum, P(A — B)Q = (%T AOQQ)' So, PAQ = <Ej=10bjEjj A(;), and by, ..., b are

singular values of A. Thus,

k r k
IPAQ — PBQIE = tr (AA%) = 30 = 3,47 = D00
j=1 j=1 j=1
which is minimum if (by,...,b0,) = (s1(4),...,sk(A4)). O

Note that the Ay is uniquely determined if and only if sg(A) > sk41(A).

2.2  Schur Triangularization lemma and its consequences

Theorem 2.2.1 Let A € M, and det(\ — A) = [[7_, (A = X;). Then there is a unitary U

such that U*AU 1is in upper (or lower) triangular form with diagonal entries Ay, ..., A,.

Proof. By induction on n. If n = 1, the results holds. Assume the results holds for

matrices of sizes smaller than n, and A € M,,. Let Az = A\juy for a unit vector uy, and U
Ak
0 A,
assumption, there is V4 € M, 1 such that V;*A3V; = T is in triangular form. If U =

Ui([1] @ V1), then U*AU = ()\1 * > = ()\1 *> is in upper triangular form. O

is unitary with first column of U; equal to u;. Then U;AU; = ( ) By induction

0 V*AV 0 T

Note that Ai,..., A, can be arranged in any order we like. Some of the \; could be the
same. If i1, ..., y, are distinct and det(A —A) = [[}_, (A —p;)™7, we say that A has distinct

eigenvalues 1, ..., i, with multiplicities mq, ..., m,, respectively.

Theorem 2.2.2 (Cayley-Hamilton) Let A € M, and f(\) = det(A\] — A) = 37 ja; V.
Then

n

FA) = a4 =0,.
=0
Proof. We need to show that > 7 ja;A; = (A= MI)--- (A= \1,) = 0. It suffices to
show that
0=Z=[U"A-NDU]---[U(A—- N\ 1,)U],



where U*AU = (a;;) is in upper triangular form with diagonal entries Ay,...,\,. Then
B; = U*(A — X\;1)U is in upper triangular form with (j, j) entry equal to zero. .

We will prove by induction on n that if By, ..., B, € M, are matrices in upper triangular
form, and the (j, j) entry of B, equals zero for j =1,...,n, then By --- B, = 0,.

For n = 1, the result is trivial. For n = 2, the product B; and Bs has the form

NIt

Suppose the result holds for matrices in M,,_;. Let B; = (

which is clearly equal to 0Os.

*x ok
0T,
by block multiplication of By --- B,, and the induction assumption on 75 ---T, = 0,_1, we

>forj:1,...,n. Then

have
0 = * * 0 =
sees= (0 7) (5 nln) = (0 or,) =0
Now, let B; = U*(A — N\, 1)U = U*A,;U — X\;I. We get the desired result. O

Remark People have the misconception that det(A] — A) = 0 is valid if we put A = A in
the above equation so that det(A] — A) = det(A — A) = det(0,) = 0. In the theorem, we
actually put ¥ = A* in f(x) = ag+ - - + 2™ and conclude that f(A) = 0, the zero matrix.

2.3 Normal matrices

Definition 2.3.1 (1) A matriz A € M, is normal if AA* = A*A. (2) A matrizx A € M,
is Hermitian if A = A*. (3) A matrix A € M, is positive semidefinite if x*Ax > 0 for all
x € C". (4) A matriz A € M, the matriz A is positive definite if x*Ax > 0 for all nonzero
x e C". (5) A matrix A € M, is unitary A*A = I,,.

Theorem 2.3.2 A matrix A € M, is normal if and only if A = UDU* for a diagonal

matriz D, i.e., A is unitarily diaogonalizable.

Proof. 1f U*AU = D, ie., A = UDU* for some unitary U € M,. Then AA* =
UDU*UD*U =UDD*U* =UD*DU* = UD*U*UDU* = A*A.

Conversely, suppose U* AU = (a;;) = A is in upper triangular form. If AA* = A*A, then
AA* = A*A so that the (1,1) entries of the matrices on both sides are the same. Thus,

lan]? + -+ + |aa|* = an|?
implying that A = [a11] ® A;, where Ay € M,,_1 is in upper triangular form. Now,
HCL11|2] D AIAT = AA* = A*A = [|CL11|2] D ATAI
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Consider the (1, 1) entries of A; A} and AfA;, we see that all the off-diagonal entries in the

second row of A; are zero. Repeating this process, we see that A= diag (a11, ..., apy). O

Proposition 2.3.3 A matrix A € M, is unitary if and only if it is unitarily similar to a

diagonal matrix with all eigenvalues having modulus 1.

Proof. 1t U*AU = D = diag (\y,...,\,) with [\ | = -+ = |\,| = 1, then A is unitary
because
AA*=UDUUD*U* =U(DD")U* =UU" = I,.

Conversely, if AA* = A*A = [, then U*AU = D = diag (\y,...,\,) for some unitary
U € M,. Thus, [ =U*IU = U*AUU*A*U = DD*. Thus, || =---= |\ = 1. O

Theorem 2.3.4 Let A € M,. The following are equivalent.
(a) A is Hermitian.
(b) A is unitarily similar to a real diagonal matriz.

(c) x*Ax € R for all x € C™.

Proof. Suppose (a) holds. Then AA* = A% = A*A so that U*AU = D = diag (A1,...,\,)
for some unitary U € M,,. Now, D = U*AU = U*A*U = (U*AU)* = D*. So, \,..., A, € R.
Thus (b) holds.

Suppose (b) holds and A = U*DU such that U is unitary and D = diag (dy,...,d,. Then
for any x € C", we can set Ux = (y1, ..., yn)" s0 that x*Ax = x*U*DUx = Y7, d;ly;|* € R.

Suppose (c) holds. Let A = H 4 iG with H = (A4 A*)/2 > 0 and G = (A — A*)/(2i).
Then H = H* and G = G*. Then for any x € C", x*Hx = p; € R, x*Gx = s € R so
that x*Ax = p; + ipe € C. If G is nonzero, then V*GV = diag (\1,..., \,) with A; # 0.
Suppose x is the first column of V. Then x*Ax = x*Hx + ix*Gx = p; + i\ ¢ R, which is

a contradiction. So, we have G = 0 and A = H is Hermitian. 0

Proposition 2.3.5 Let A € M,,. The following are equivalent.
(a) A is positive semidefinite.
(b) A is unitarily similar to a real diagonal matriz with nonnegative diagonal entries.

(¢c) A= B*B for some B € M,. (We can choose B so that B = B*.)
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Proof. Suppose (a) holds. Then x*Ax > 0 for all x € C". Thus, there is a unitary
U € M, such that U*AU = diag (\1,...,\,) with Ay,... A\, € R. If there is \; < 0, we
can let x be the jth column of U so that x*Ax = \; < 0, which is a contradiction. So, all
Ao Ay >0,

Suppose (b) holds. Then U*AU = D such that D has nonnegative entries. We have
A = B*B with B = UDY?U* = B*. Hence condition (c) holds.

Suppose (c) holds. Then for any x € C", x*Ax = (Bx)*(Bx) > 0. Thus, (a) holds. O

A quick proof of SVD and an efficient algorithm to find SVD.
Let A € M,,,. Then A*A is psd so that V*A*AV = diag(\,...,\,). Since \; =

v;A*Av;, we see that \; = s7 for some s5; > 0, and we may assume that s7 > --- > s7.
Let s?,...,s? be the nonzero eigenvalues of A*A, and let u; = Ajv;/||Ajv;]] € C™ for
j=1,...,r. Then {uy,...,u,} is an orthonormal set and A = Ej:l sju;jvi. If we only need

A = Zle sju;vy, one can use power method to get s1,v; and then u; from A*A. Then get
S, V9 and then uy from A5A, with Ay = A — syuyv7, and so forth.
For any A € M,, we can write A = H +iG with H = (A+ A*)/2 and G = (A — A*)/(2i).

This is known as the Hermitian or Cartesian decomposition.

Theorem 2.3.6 Let A € M,,. Then A = PU =V Q for some positive semidefinite matrices
P.Q € M, and unitary U,V € M,.

e If A is invertible, then the matrices P,Q,U,V are uniquely determined as (P,U) =

(VAA*, P1A), and (Q,V) = VA*A, AQ7Y).

e The matriz A is normal if and only if PU =UP or V@ = QV.

Corollary 2.3.7 In fact, if A € M, ,, with n > m and has rank m, then A = VR where
V € M, has orthonormal columns and R € M, can be chosen to be upper triangular,
lower triangular, or positive definite.

2.4 Commuting families and Specht’s theorem

Definition 2.4.1 A family F C M, is a commuting family if every pair of matrices X,Y &€
F commute, i.e., XY =Y X.

Lemma 2.4.2 Let F C M, be a commuting family. Then there a unit vector v € C™ such

that v is an eigenvector for every A € F.

Proof. Let V' C C™ with minimum positive dimension be such that A(V) C V. We will
show that dim V' = 1 and the result will follow. First, A(C") C C". So, one can always try
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to find V with a minimum positive dimension. We claim that every nonzero vector in V'
is an eigenvector of A for every A € F. Then for any non-zero v € V, Vj = span {v} will
satisfy A(Vp) C Vp with dim Vg = 1.

Suppose there is A € F such that not every nonzero vector in v is an eigenvector of A.
Now, if V' has an orthonormal basis {uy,...,u;} and U is unitary with wuy,...,u; as the
Bi1 B

0 Bag
v =ajuj + - - - + agur € V such that Av = Av.

Let Vo = {u €V : Au = Au} C V. Then V} is a subspace of V' with smaller dimension.
Next, we show that Bu € Vy for any u € V. Ift B € F and u € V, then Bu € V as
B(V) C V, and A(Bu) = BAu = BMAu = ABu, i.e., « = Bu € V,. So, Vj satisfies
B(Vp) € Vg and dim Vg < dim V, which is impossible. The desired result follows. O

first k£ columns. Then U*BU = < > with B € My, for every B € F. Then there is

Theorem 2.4.3 Let F C M, be a commuting family. Then there is a unitary matriz

U € M, such that U*AU is in upper triangular form.

Proof. We can consider the a basis for the span of F, and assume that F = {Ay,..., A}
is finite. Assume A; is nonscalar, and has an eigenvalue A;. Then A,;(V) C V if V is the null

space of Ay — A;I. By induction, there is a common unit eigenvector x for all A; € F. Then

construct U with z as the first column so that U*A;U = (* *‘), where {By,..., B} is a

0 B,
commuting families. Apply induction to finish the proof. ([l

Corollary 2.4.4 Suppose F C M, is a commuting family of normal matrices. Then there
is a unitary matric U € M, such that U*AU is in diagonal form.

There is no easy canonical form under unitary similarity.! How to determine two matrices

are unitarily similar?

Definition 2.4.5 Let {X,Y} C M,,. A word W(X,Y) in X andY of length m is a product

of m matrices chosen from {X,Y} (with repetition).

Theorem 2.4.6 Let A, B € M,,.

(a) If A and B are unitarily similar, then tr (W (A, A*)) = tr (W(B, B*)) for all words
W(X,Y).

(b) tr (W (A, A*)) = tr (W(B, B*)) for all words W (X,Y) of length 2n?, then A and B

are unitarily similar.

'Helene Shapiro, A survey of canonical forms and invariants for unitary similarity, Linear Algebra Appl.
147 (1991), 101-167.

13



2.5 Other canonical forms

Unitary congruence

e A matrix A € M, is unitarily congruent to B € M,, if there is a unitary matrix U such

that A =U'BU.
e There is no easy canonical form under unitary congruence for general matrices.

. where

e Every complex symmetric matrix A € M, is unitarily congruent to Zk Ej;,

S .S
7=1°J
§1 > +++ > s > 0 are the nonzero singular values of A.

e Every skew-symmetric A € M, is unitarily congruent to 0,,_o; and

0 Sj .
<_Sj 0)7 j_la"‘7k7

where s; > -+ > s, > 0 are nonzero singular values of A.
e The singular values of a skew-symmetric matrix A € M,, occur in pairs.

e Two symmetric (skew-symmetric) matrices are unitarily congruent if and only if they

have the same singular values.

Proof. Suppose A € M, is symmetric. Let x € C" be a unit vector so that x'Ax is
real and maximum, and let U € M, be unitary with x as the first column. Show that
U'AU = [s1] ® A;. Then use induction.

Suppose A € M, is skew-symmetric. Let x,y € C" be orthonormal pairs such that x* Ay

is real and maximum, and U € M,, be unitary with x,y as the first two columns. Show that

U%U:(O 51

) @ A;. Then use induction. ]
—S1 0

2.6 Real matrices

Theorem 2.6.1 Let A € M, be a real matriz, and
det(xl —A) = (x —c1)--- (v — ¢.)(2® — 212 + a} + b3) - (2% — 2apx + ai + bZ).

Then there is an real orthogonal matriz P such that P'AP = (Chs)o<rs<k S in upper tri-
angular block form, where Coo € M, (R) is an upper triangular matriz with diagonal entries

1,y Cr, Cy € My(R) has eigenvalues a; +ib; for j =1,...k, and Cys is zero if r > s.

14



Furthermore, if A is normal, i.e., A'A = AA?, then
PtAPZBo@Bl@"'@Bk

with By = diag (c1,...,¢.), and B; = < aé Zj) € My(R) for j=1,... k.
Y J
(a) If A= A, then By, ..., By are vacuous.
(b) if A= —A", then By = 0,.

(c) If A is orthogonal, then by,...,b. € {1,—1} and a? + b? =1forj=1,... k.
Proof. If A has a real eigenvalue ¢; and Au; = cju;, where u; is a unit eigenvector.
Let P be real orthogonal with u; as the first column. Then P{AP; = (Cl x ) . If A has

0 A
another real eigenvalue ¢, then A; has ¢; as an eigenvalue and there is an orthogonal matrix

P2 c Mn—l such that P2tA1P2 = (62 *) . Then
0 A,
cCl * *
(e PRPAR(J@P) = [0 o =
0 0 A,

Repeating this argument, we can get

t o Coo *
PTAPT_(O o)

Now, C} has complex eigenvalue a; + ib;. If Ci(x + iy) = (a1 + iby)(x + iy) for a pair
of nonzero real vectors =,y € R". Then Ciz = ajx — byy and Ciy = a1y + bz, and
Ci(x—iy) = (a1 —iby)(x —1iy), i.e., Ci[x y] = [z y|By. Now, z+1iy and x —iy are eigenvectors
of B corresponding to the eigenvalues a; 4 iby. So, {x + iy, x — iy} is linear independent
and so is {x,y}. Apply Gram-Schmidt process to {z,y} to get a real orthonormal family
{q1,92}. Then [z y] = [¢1 ¢2|T} for an upper triangular matrix 7} € My(R). Let Q1 € Moy

be real orthogonal with ¢, ¢2 as the first two columns. Then
Cyp  *
QtlBlQl — < 61 CQ)

so that Cy; = T BT} ! has eigenvalues a; £ 2b;. One can apply an inductive arguments to
C5 and get the desired form.

In case A is normal, then so is Q'AQ. One can then deduce that Q*AQ has the form
By @® -+ @ By. Assertions (a) — (¢) can be verified directly. O

15



3 Similarity and equivalence

We consider other canonical forms in this chapter.

3.1 Jordan Canonical form

Theorem 3.1.1 Suppose A € M,, has distinct eigenvalues Ay, ..., \r.. Then A is similar to
Ajy @ - @ Ay such that Aj; has (only one distinct) eigenvalue \; for j =1,... k.

Lemma 3.1.2 Suppose A € M,,, B € M, have no common eigenvalues. Then for any
C € M,,, there is a unique solution X € M,y,,, such that AX — XB =C.

Proof. Let U be unitary such that B = U*BU is in upper triangular form. If C=CU
and Y = XU, then we consider C' = CU = A(XU) — (XU)U*BU = AY — Y B and solve
for Y. Let C' = [c1 e, Y =[y1-yn) and B = bi;], where byy, ..., by, are the eigenvalues
of B. Then

c1 = Ay — b1y, has a unique solution y; as A — by1 [ is invertible,

Co = Ays — baots — b1oyq has a unique a solution 1y, as A — byo [ is invertible,

cn = AYn — bunyn — Z;:ll b1;y; has a unique solution y,, as A — b,,,/ is invertible. O

A Ap
0 A
no common eigenvalue. Then A is similar to Ay @ Ags.

Proposition 3.1.3 Suppose A = ( ) € M, such that A1 € My, Ays € M, have

Proof. By the previous lemma, there is X be such that A1 X + A, = XAy, Let

S = (% ]X ) so that AS = S(Aj; @ Ag). The result follows. O
n—k

Definition 3.1.4 Let Ji(\) € My such that all the diagonal entries equal A and all super di-
A1

agonal entries equal 1. Then Ji(\) = - /\ € My is call a (an upper triangular)

Jordan block of X of size k.

Theorem 3.1.5 Fvery A € M, is similar to a direct sum of Jordan blocks.

16



Proof. We may assume that A = A;; @ - -@ Agg. If we can find invertible matrices Sy, ..., Sk
such that Si_lAiiSZ- is in Jordan form, then S~'AS is in Jordan form for S = S; @ --- ® Sj.
Focus on T = A;; — NI, If S7'T'S is in Jordan form, then so is Aj;.
One may see http://cklixx.people.wm.edu/teaching/math408/Jordan.pdf for a proof of

this. The note will appear on arXiv soon. U

To determine the Jordan form of a matrix A with det(z] —A) = (z—A)™ -+ - (& — A\g)"*,
one only needs to study the rank of (A — N\, I)™ form=1,...,n,.
Let ker((A— AI)?) = £; has dimension ¢;. Then there are ¢; Jordan blocks of A, and there

are ¢; — \;_1 Jordan blocks of size at least 1.

Example 3.1.6 Let T = Then Te; = 0,Tey = 0,Tes = e1 + 3ey,Tey =

o O O
o O O

1
3
0

O =N

00 0O
2e1 +4ey. So, T(V) =span{ey,ea}. Now, Tey = Tey =0 so that ey, eq form a Jordan basis
for T(V'). Solving uy,uy such that T'(uy) = e1,T(uz) = eq, we let uy = —2e3 + 3e4/2 and
U9 = €3 — 64/2. ThUS, TS = S(JQ(O) @ JQ(O)) with

1 0 0 0
0 0 1 0
=10 2 0 1
0 3/2 0 —1/2
01 2
Example 3.1.7 Let T' = |0 0 3. Then Tey = 0,Tey = e1,Tes = 2e; + e5. So,
0 0O

T (V) =span{ey,es}, and ey, Tes = ey form a Jordan basis for T(V). Solving uy such that
T(uy) = ea, we have uy = (—2e9 + e3)/3. Thus, T'S = SJ5(0) with
1 0 0
s=101 —2/3
00 1/3

Example 3.1.8 Suppose A € My has distinct eigenvalues A1, Ao, A3 such that A — M\ I has
rank 8, A — XoI has rank 7, (A — X\oI)? and (A — XoI)3 have rank 5, A — \3I has rank 6,
(A —X31)? and (A — X\31)? have rank 5. Then the Jordan form of A is

J1(A1) B Jo(A2) B Jo(A2) B J1(A3) B J1(A3) B J2(A3).

17



3.2 Implications of the Jordan form

Theorem 3.2.1 Two matrices are similar if and only if they have the same Jordan form.

Proof. If A and B have Jordan form J, then S™'AS = J = T~ BT for some invertible
S,T so that R"'AR = B with R = ST,
If ST'AS = B, then rank (A — pul)* = rank (B — pul)* for all eigenvalues of A or B, and

for all positive integers ¢. So, A and B have the same Jordan form. 0

Remark 3.2.2 [f A=S(Ji1 ® - & Jp)S™t, then A" = S(J" @ --- @ J")S™ L
Theorem 3.2.3 Let Jy(\) = Al + Ny, where Ny, = Zf;ll E;js1. Then
Je(A)™ = Z (m) AN,
=0 \J

where N = I, Ng =0 forj >k, and Ng has one’s at the jth super diagonal (entries with

indexes (¢,€ + j)) and zeros elsewhere.
For every polynomial function f(z) = a,,2"™ + - - - + ao, let
f(A) =a, A"+ -+ apl, for Ae M,.
Definition 3.2.4 Let A € M,,. Then there is a unique monic polynomaial
ma(z) = 2™+ a1 ™+ -+ ap,
such that ma(A) = 0. It is called the minimal polynomial of A.

Theorem 3.2.5 A polynomial g(z) satisfies g(A) = 0 if and only if it is a multiple of the

mainimal polynomial of A.

Proof. If g(z) = ma(z)q(z), then g(A) = ma(A)q(A) = 0. To prove the converse, by
the Euclidean algorithm, g(z) = ma(2)q(z) + r(z) for any polynomial g(z). If 0 = g(A) =
ma(A)g(A) + r(A) = r(A), then r(A) = 0. But r(2) has degree less than mu(z). If r(z)
is not zero, then there is a nonzero p € C such that pr(z) is a monic polynomial such that

ur(A) = 0, which is impossible. So, r(z) = 0, i.e., g(z) is a multiple of m4(z). O

We can actually determine the minimal polynomial of A € M,, using its Jordan form.

Theorem 3.2.6 Suppose A has distinct eigenvalues \q, ..., \; such that r; is the mazimum
size Jordan block of \; for j =1,... k. Then ma(z) = (z — A\;)™ -+ (2 — \g) "%

18



Proof. Following the proof of the Cayley Hamilton Theorem, we see that m4(A) = 0,.
By the last Theorem, if g(A) = 0,,, then g(z) = ma(2)q(z). So, taking ¢(z) = 1 will yield

the monic polynomial of minimum degree satisfying m4(A) = 0. U

Remark 3.2.7 For any polynomial g(z), the Jordan form of g(A) can be determine in
terms of the Jordan form of A. In particular, for every Jordan block Jx(\), we can write
9(2) = (2 = N¥q(2) +7r(2) with r(z) = ag + - -+ + ap_12"71 s0 that g(Jp(N\)) = r(Jr(\)).

Note that
IO IO B A C) B il O
ol 11 2! r—1)!
0 N M S e O
0! 11 : (r—2)!
9(J:(N)) = 0 0 :
. ICY A C)
: : ol 11
0 - . 0 9(Y)

o
One can extend this to function g(z), which are differentiable up to order r in a domain

containing A in the interior.

3.3 Further canonical forms

Equivalence

e Two matrices A, B € M,,,, are equivalent if there are invertible matrices R € M,,, S €
M,, such that A = RBS.

e Every matrix A € M,,,, is equivalent to Z?Zl E;j, where k is the rank of A.

e Two matrices are equivalent if they have the same rank.

Proof. Elementary row operations and elementary column operations. 0
x-congruence

e A matrix A € M, is x-congruent to B € M, if there is an invertible matrix S such
that A = S*BS.

e There is no easy canonical form under x-congruence for general matrix.>

e Every Hermitian matrix A € M, is *-congruent to [, ® —I, ® 0,,_,_,. The triple
v(A) = (p,q,n — p — q) is known as the inertia of A.

2Roger A. Horn and Vladimir V. Sergeichuk, Canonical forms for complex matrix congruence and *-
congruence, Linear Algebra Appl. (2006), 1010-1032.
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e Two Hermitian matrices are x-congruent if and only if they have the same inertia.

Proof. Use the unitary congruence/similarity results. 0

Congruence or t-congruence

e A matrix A € M, is t-congruent to B € M,, if there is an invertible matrix S such that

A= S'BS.

There is no easy canonical form under t-congruence for general matrices; see footnote
2.

Every complex symmetric matrix A € M, is t-congruent to I & 0,,_;, where k =

rank (A).

. . . 1
Every skew-symmetric A € M,, is t-congruent to 0,,_s, and k copies of <_01 0).
The rank of a skew-symmetric matrix A € M, is even.

Two symmetric (skew-symmetric) matrices are t-congruent if and only if they have the

same rank.

Proof. Use the unitary congruence results. U

3.4

Remarks on real matrices

Remark 3.4.1 Let A € M,(R). Then A =S+ K where S = (A+ A")/2 is symmetric and
K = (A— A")/2 is skew-symmetric, i.e., K!' = —K.

Note that 'Kz = 0 for all x € R™.

Clearly, Az € R for all real vectors x € R™, and the condition does not imply that A

1s symmetric as in the complex Hermitian case.

The matriz A satisfies x*Ax > 0 for all if and only if (A+ A')/2 has only nonnegative
eigenvalues. The condition does not automatically imply that A is symmetric as in the

complex Hermitian case.

Every skew-symmetric matrizc K € M,(R) is orthogonally similar to Oy and

0 Sj .
<_Sj 0)7 j_17"'7k7

where s1 > --+ > s > 0 are nonzero singular values of A.
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o If A € M,(R) has only real eigenvalues, then one can find a real invertible matrix such
that S™*AS is in Jordan form.

o If A€ M,(R), then there is a real invertible matrix such that S™'AS is a direct sum
of real Jordan blocks, and 2k x 2k generalized Jordan blocks of the form (C;)i<; <k

with Oy = -+ = Oy = ( ”:L 52) Ciy = -+ = Ch_1 = I, and all other blocks
- M2 1

equal to 0,.

e The proof can be done by the following two steps.

First of all, find the Jordan form of A. Then group Jx(A\) and Ji(\) together for any
complex eigenvalues, and find a complex S such that S~1AS is a direct sum of the

above form.

Second if S = 5] 4 iS55 for some real matrix Sy, .S, show that there is S = S1 + 1Sy for

some real number r such that S is invertible so that S~'AS has the desired form.
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4 Eigenvalues and singular values inequalities

We study inequalities relating the eigenvalues, diagonal elements, singular values of matrices
in this chapter.

For a Hermitian matrix A, let A(A) = (A1 (A), ..., A\ (A)) be the vector of eigenvalues of A
with entries arranged in descending order. Also, we will denote by s(A) = (s1(A4), ..., sn(A))
the singular values of a matrix A € M,,,,. For two Hermitian matrices, we write A > B if

A — B is positive semidefinite.

4.1 Diagonal entries and eigenvalues of a Hermitian matrix

Theorem Let A = (a;;) € M, be Hermitian with eigenvalues \y > --- > \,. Then for any
1<k<n,an+- - +ag <A\ + -+ . The equality holds if and only if A = Ay @ As

so that Ayp has eigenvalues A, ..., .

Remark The above result will give us what we needed, and we can put the majorization

result as a related result for real vectors.

Lemma 4.1.1 (Rayleigh principle) Let A € M, be Hermitian. Then for any unit vector
x € C",
AM(A) > x"Ax > N\, (A).

The equalities hold at unit eigenvectors corresponding to the largest and smallest eigenvalues

of A, respectively.

Proof. Done in homework problem. O

If we take x = ¢;, we see that every diagonal entry of a Hermitian matrix A lies between
A1(A) and A, (A).

We can say more in the following. To do that we need the notion of majorization and
doubly stochastic matrices.

A matrix D = (d;;) € M, is doubly stochastic if d;; > 0 and all the row sums and column
sums of D equal 1.

Let x,y € R™. We say that x is weakly majorized by y, denoted by x <,, y if the sum of
the k largest entries of x is not larger than that of y for £ = 1,...,n; in addition, if the sum
of the entries of x and y, we say that x is majorized by y, denoted by x < y. We say that x
is obtained from y be a pinching if x is obtained from y by changing (y;, y;) to (y; —6,y;+96)
for two of the entries y; > j; of y and some 6 € (0,y; — y;).

Theorem 4.1.2 Let x,y € R" with n > 2. The following conditions are equivalent.

22



(a) x <y.

(b) There are vectors Xi,Xa,...,X; with k < n, x; =y, X3 = X, such that each x; is

obtained from x,;_y by pinching two of its entries.

(¢) x = Dy for some doubly stochastic matriz.

Proof. Note that the conditions do not change if we replace (x,y) by (Px,Qy) for any
permutation matrices P, (). We may make these changes in our proof.

(¢) = (a). We may assume that x = (xq,...,2,)" and y = (y1,...,y,)" with entries
in descending order. Suppose x = Dy for a doubly stochastic matrix D = (d;;). Let
vi=(er+ - +ep)and viD = (ci,...,c,). Then 0 <¢; <1and Y37, ¢; =k. So,

k
j=1
< aptayut+[(l—a)+--+ 1=y <1+ + Uk

Clearly, the equality holds if £ = n.

(a) = (b). We prove the result by induction on n. If n = 2, the result is clear. Suppose the
result holds for vectors of length less than n. Assume x = (z1,...,2,) andy = (y1,...,yn)"
has entries arranged in descending order, and x < y. Let £ be the maximum integer such
that y, > x;. If k =mn, then for S =377 x; =" y;,

1 n—1
j=1

7j=1
sothat z = -+~ =2, =y = -+ = y,. S0, x = x; = Yy. Suppose k < n and y; >
x1 > Yrsr1- Then we can replace (yg,yrs1) by (Ur,Urs1) = (1, Yk + Yrs1 — 21). Then
removing z; from x and removing g in x; will yield the vectors x = (z9,...,z,)" and
Y= Yot Uhtts- - Yn)' in R"! with entries arranged in descending order. We will

show that X < y. The result will then follows by induction. Now, if ¢ < k, then
Tot- o tx <yt A+ T Sy F Yeot;
if ¢ > k, then
o+t < (it y) — T =y U T e T Y o+ Y

with equality when ¢ = n. The results follows.
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(b) = (c). If x; is obtained from x;_; by pinching the pth and gth entries. Then there

is a doubly stochastic matrix P; obtained from I by changing the submatrix in rows and

t;, 1—t
1—t;

for some t; € (0,1). Then x = Dy for D = Py --- P, which is doubly stochastic. O

columns p, ¢ by

Theorem 4.1.3 Let d,a € R". The following are equivalent.
(a) There is a complex Hermitian (real symmetric) A € M, with entries of a as eigenvalues

and entries of d as diagonal entries.

(b) The vectors satisfy d < a.
Proof. Let A = UDU* such that D = diag (A,...,\,)). Suppose A = (a;;) and U =

(ui;). Then aj; = Y i, Mifuji®. Because (|uj|?) is doubly stochastic. So, (aii,. .., an,) <
(AL, An)

We prove the converse by induction on n. Suppose (dy,...,d,) < (A1, ..., Ap). lf n =2,
let di = A\ cos? 0 4+ Ay sin? 6 so that

(a5;) = cosf siné A\ cosf —sinf
27\ —sin@ cosf Ao/ \sinf cos®

has diagonal entries dy, ds.
Suppose n > 2. Choose the maximum k such that A\, > d;. If A\, = d;, then for
S=>_1dj =27 Aj we have

n—1 n—1
A Zdy > 2dy=S8=) d;>S=> N\ =\
J=1 j=1

Thus, A, = dy = -+ =d, = S/n = 2?21 A;j/n implies that Ay = --- = \,. Hence,
A = \,I is the required matrix. Suppose k < n. Then there is A; = A € My(R)
with diagonal entries di, Ay, + A\py1 — di and eigenvalues Aj, Aj;1. Consider A = A; @ D
with D = diag (A1,..., Ae—1, \e+2,-- -, An). As shown in the proof of Theorem 4.1.3, if
Met1 = Mg+ A1 — di, then

(day - dn) < Nhtts ALy o ooy Mot Mit2s - -5 An).
By induction assumption, there is a unitary U € M,,_; such that

U] ® D)U* € M,y
has diagonal entries do,...,d,. Thus, A = ([1] ® U)(A; & D)([1] & U*) has the desired

eigenvalues and diagonal entries. 0
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4.2 Max-Min and Min-Max characterization of eigenvalues

In this subsection, we give a Max-Min and Min-Max characterization of eigenvalues of a

Hermitian matrix.

Lemma 4.2.1 Let V} and Vy be subspaces of C* such that dim(Vy) + dim(V2) > n, then
VinVy # {0},

Proof. Let {uy,...,u,} and {vy,...,v,} be bases for V; and V,. Then p+¢ > n and the

linear system [u; - - - u,vy - - - v,Jx = 0 € C" has a non-trivial solution x = (x1, ..., Zp, Y1, ..., Y)"
Note that not all 21, ..., xz, are zero, else y;vi +- - - +y,v1 = 0 implies y; = 0 for all 5. Thus,
v=zu +- - +zu,=—(y1v1 + - + y,V,) is a nonzero vector in Vi N V. O

Theorem 4.2.2 Let A € M,, be Hermitian. Then for 1 <k <n,

)\k(A) = max{)\k(X*AX) X € Mmk,X*X = Ik}
= mln{)\l(Y*AY) 1Y € Mn,n—lc—f—h Y'Y = n—k‘—i—l}-

FEquivalently,
A(A) = max min z"Ax = min max z*Azx.
V<O zeV v <cn zEV
dimV =k ||z|| =1 dimV =n—-—k+1|z|| =1
Proof. Suppose {uy,...,u,} is a family of orthonormal eigenvectors of A corresponding to

the eigenvalues A\ (A),..., A\, (A). Let X = [uy - - -ug]. Then X*AX = diag (A1 (A), ..., \(A))
so that

Conversely, suppose X has orthonomals column xi,...,X; spanning a subspace V;. Let

Uug,..., U, span a subspace V5 of dimension n — k + 1. Then there is a unit vector v =

Z?:l rix; =Y Y. Let x = (21, ,20)5 Y = Yk -+, Yni)'s Y = [Wg ... uppa]. Then
v = Xx =Yy so that Y*AY = diag (At(4), ..., \(A)). By Rayleigh principle,

M (XTAX) < x"X"AXx =y Y"AYy < A (4).

4.3 Change of eigenvalues under perturbation

Theorem 4.3.1 Suppose A, B € M,, are Hermitian such that A > B. Then A\(A) > \e(B)
forallk=1,... n.
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Proof. Let A = B + P, where P is positive semidefinite. Suppose k € {1,...,n}. There
is Y € M, with Y*Y = I such that
Me(B) = M(Y*BY ) = max{\,(X*"BX) : X € M,,,,, X" X = I;.}.
Let y € CF be a unit eigenvector of Y*AY corresponding to A (X*AX). Then
Me(A) = max{\(X"AX): X € My, ,,, XX = I;;}
> MYTAY) =y Y (B+P)Yy=y'Y'BYy+y'Y*PYy
> YY'BYy > \M(Y'BY) = Ai(B). O

Theorem 4.3.2 (Lidskii) Let A, B,C = A+B € M, be Hermitian matrices with eigenvalues
ap > o> an, by > > by, 00 20 > ey, respectively. Then Y70 a;+ 305 by =00 ¢
and for any 1 <r;y <--- <r, <n,

k k

k
anfj+1 S Z(er - arj) S Zb]
j=1 j=1 j=1

Proof. Suppose 1 < r; < --- <1, < n. We want to show Zle(crj —ay,;) < 25:1 b;
Replace B by B — biI. Then each eieganvelue of B and each eigenvalue of C' = A + B will
be changed by —by. So, it will not affect the inequalities. Suppose B = Z?Zl bjx;x;. Let
B, = Z?Zl bjx;x;. Then

k

k
D (e, —ar) < ) (M (A+ By) = A (A) because Aj(A+ B) < \j(A+ By) for all j

j=1 j=1

Z()\j(A + B;) — Aj(A))  because Aj(A) < \;j(A+ By) for all j

<
j=1
k k
= tr(A+By) —tr(A) =) N(By) =) b
j=1 j=1
Replacing (A, B,C) by (—=A, —B,—C), we get the other inequalities. O
Lemma 4.3.3 Suppose A € M,,,, has nonzero singular values s; > --- > s,. Then

(?4”: 64> has nonzero eigenvalues s, ..., £sg.

Theorem 4.3.4 Let A, B,C € M,,,, with singular values a; > -+ > a,,by > --- > b, and

Cly - -, Cp, 1TESPectively. Then for any 1 < jy < --- < ji, < n, we have
k k
Z Cry = Gr] < Z
J=1 J=1

26



4.4 Eigenvalues of principal submatrices

Theorem 4.4.1 There is a positive matriz C' = (:1 *> with A € My, so that A, B, C have

B
eigenvalues a1 > -+ > ag, by > -+ > b,y and ¢; > -+ > ¢,, respectively, if and only if

there are positive semi-definite matrices A, B,C' = A + B with eigenvalues a1 > -+ > aj >

O=arp1=" =0, 01> 20,1, 20=bp g1 ="--=bp, andcy > --- > ¢c,.
Consequently, for any 1 < j; < -+ < jip < n, we have Z;?:l(c” —a,,;) < Z?Zl b;.

Proof. To prove the necessity, let ¢ = C*C with C' = [Cy Cy] € M, with Cy € M, .
Then A = C7Cy has eigenvalues ay, .. ., ai, and B = C5C5 has eigenvalues by, . .., b,_. Now,
C=0C = C1CY + C2C5 also eigenvalues ¢4, ..., ¢,, and A= 4 f,B = (5C5 have the
desired eigenvalues.

Conversely, suppose the A, B, C have the said eigenvalues. Let A = C,CY, B = CyC5
for some Cy € M,, 1, Cy € My, . Then C' = [C) Cy]* = [Cy 9] have the desired principal

submatrices. O

By the above theorem, one can apply the inequalities governing the eigenvalues of
A,B,C = A+ B to deduce inequalities relating the eigenvalues of a positive semidefi-
nite matrix C' and its complementary principal submatrices. One can also consider general

Hermitian matrix by studying C' — \,,(C)I.

Theorem 4.4.2 There is a Hermitian (real symmetric) matriz C € M, with principal sub-
matriz A € M, such that C' and A have eigenvalues ¢, > --- > ¢, and a1 > -+ > Qp,
respectively, if and only if

Cj Z a; and Qm—j41 Z Cn—j+1, j = 1, oo,

Proof. To prove the necessity, we may replace C' by C' — \,(C)I and assume that C' is

positive semidefinite. Then by the previous theorem,
cj—ajzbn_mZO, ]:1,7771

Applying the argument to —C', we get the conclusion.

To prove the sufficiency, we will construct C' — ¢, I with principal submatrix A — ¢, 1,,.
Thus, we may assume that all the eigenvalues involved are nonnegative.

We prove the converse by induction on n —m € {1,...,n — 1}. Suppose n —m = 1.

We need only address the case p; € (Ajt1,A;) for j = 1,...,n — 1, since the general
case (j € [Aj+1,A;] follows by a continuity argument. Alternatively, we can take away the
pairs of ¢; = a; or a; = cj;;1 to get a smaller set of numbers that still satisfy the interlacing

inequalities and apply the following arguments.
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We will show how to choose a real orthogonal matrix @ such that C' = Q'diag(cy, . .., ¢,)Q
has the leading principal submatrix A € M, _; with eigenvalues a; > -+ > a,,_;. To this

end, let @ have last column u = (ug,...,u,)". By the adjoint formula for the inverse

_yy det(zl,y —A)) H;L;ll(z — aj)
(1 =€) Jun = det(I—-C) [l ,(z—¢)’

J=1

but we also have the expression

n 2

(2] — A),t = (2] — diag(My.o . M) u= Y

= (- ci)

Equating these two, we see that A(n) has characteristic polynomial H;:ll(z — u;) if and only
if

ZufH(z —a;) = 1:[(,2 —¢).
=1 i i=1

Both sides of this expression are polynomials of degree n — 1 so they are identical if and only

if they agree at the n distinct points ¢y, ..., ¢,, or equivalently,

= Wk, kzl,...,n.

Since (¢ — a;)/(ck — ¢;) > 0 for all k # j, we see that wy > 0. Thus if we take u, = \/wy
then A has eigenvalues aq, ..., a,_1.

Now, suppose m <n — 1. Let

~ max{cj—i-lu aj} 1 <j<m,
min{c;, Gm_ntjr1} m<j<n.
Then
CL2>2CL2C 2> 2 Cpq 2 Cpi1 = Cp,
and

6j2aj25n—m—1+jv j:]_,,m

By the induction assumption, we can construct a Hermitian C' € M,_; with eigenvalues
€1 > +++ > Cn_1, whose m X m leading principal submatrix has eigenvalues a; > --- > a,,,
and C is the leading principal submatrix of the real symmetric matrix C' € M, such that C

has eigenvalues ¢; > --- > ¢,. OJ
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4.5 Eigenvalues and Singular values
A A
Ay Ag
The equality holds if and only if A = A11BAgs such that Ayy has singular values s1(A), . .., sk(A).

Theorem 4.5.1 Let A = ( ) € M, with A;y € My. Then|det(A1)] < H§:1 s;(A).

Proof. Let S(s1,...,s,) be the set of matrices in M,, with singular values s; > -+ > s,.

Suppose A = <ﬁ11 11212) € S(s1,...,8,) with Ay; € My such that |det(A;;)| attains the
21 Ago

maximum value. We show that A = A;; ® Ay and Aqq has singular values s; > - -+ > 5.
Suppose U, V' € M, are such that U*A;,V = diag (&1, ...,&) with & > -+ > & > 0. We
may replace A by (U* @ I,,_x)A(V @ I,_1) and assume that A;; = diag (&1,...,&k).

Let A = (a;;). We show that Ay = 0 as follows. Suppose there is a nonzero entry ag

with & < s < n. Then there is a unitary X € M, such that X (an aSl) has (1,1) entry

1s Qss

equal to
51 = {|a11|2 + |a81|2}1/2 _ {f% + |a81|2}1/2 > 51'

Let X € M, be obtained from I, by replacing the submatrix in rows and columns 1, j by X.
Then the leading k x k submatrix of X A is obtained from that of A by changing its first row
from (&,0,...,0) to (fl,*,--- ,*), and has determinant E1& & > & & = det(A1),
contradicting the fact that | det(A;;)| attains the maximum value. Thus, the first column of
Ay is zero.

Next, suppose that there is az # 0 for some k£ < s < n. Then there is a unitary X € M,
52

such that X <a22

Q25 Ugs

) has (1,1) entry equal to

&y = {Jags|® + |an*}V? = {€ + |axn*}/? > &.

Then the leading k£ x k submatrix of X A is obtained from that of A by changing its first row
from (0, &,,0,...,0) to (0, o, %, - , %), and has determinant Gy &> 68 = det(Aqy),
which is a contradiction. So, the second column of A, is zero. Repeating this argument, we
see that Ay = 0.

Now, the leading k x k submatrix of A" € S(si,...,s,) also attains the maximum.
Applying the above argument, we see that A}, = 0. So, A = Ay & Ags.

Let U,V € M,_; be unitary such that U*Ay»V = diag (Ee41,...,&). We may replace
Aby (I, ® U)A(I, ® V) so that A = diag (&, ...,&,). Clearly, &, > &4q. Otherwise, we
may interchange kth and (k + 1)st rows and also the columns so that the leading k x k
submatrix of the resulting matrix becomes diag (&1, .. .,&k—1,&+1) With determinant larger
than det(A;1). So, &1, ..., & are the k largest singular values of A. O
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Theorem 4.5.2 Let ay,...,a, be complex numbers be such that |ai| > -+ > |a,| and s; >
- > 8, > 0. Then there is A € M, with eigenvalues aq,...,a, and singular values

S1,+ 4 Sp if and only if

n

n k k
H|aj]:H5j, and H|aj|§HSj for j=1,...,n—1.
=1 =1 j=1

Jj=1

Proof. Suppose A has eigenvalues ag, ..., a, and singular values s; > --- > s, > 0. We
may apply a unitary similarity to A and assume that A is in upper triangular form with
diagonal entries aq, ..., a,. By the previous theorem, if Ay is the leading k£ x k submatrix of
A, then |ay - - ag| = |det(Ag)| < H§:1 spfor k=1,...,n—1, and |det(A)| = |a1---an| =
S Sp.

To prove the converse, suppose the asserted inequalities and equality on ay,...,a, and
S1,...,8, hold. We show by induction that there is an upper triangular matrix A = (a;;)
with singular values s; > --- > s, and diagonal values |ai|,...,|a,|. Then there will be a
diagonal unitary matrix D such that DA has the desired eigenvalues and singular values.
For notation simplicity, we assume a; = |a,| in the following.

Suppose n = 2. Then a; < s1, and ajas = s189 so that s; > ay > as > s,. Consider

[ cos sinf) (s cos¢ —sing
A6, ¢) = (— sin 0 Cosé’) ( 1 32) (singb cos ¢ ) '

There is ¢ € [0,7/2] such that the (s1cos ¢, sysin @)’ has norm a; € [sg, s1]. Then we can
find 6 € [0,7/2] such that (cos®,sinf)(s;cosp,sesind) = a;. Thus, the first column of
A(0,¢) equals (a1,0)", and A(f, ¢) has the desired eigenvalues and singular values.

Suppose the result holds for matrices of size at most n — 1 > 2. Consider (a4, ...,a,)
and (sq,...,s,) satisfying the product equality and inequalities.

If ay =0, then s, =0 and A = s51E19+ -+ + s,-1E,,_1,, has the desired eigenvalues and
singular values.

Suppose a; > 0. Let k be the maximum integer such that s > a;. Then there is

a * . ~
Al = ! ~ with Sk+1 = SkSk_H/CLl € [Sk—hsk—i-l]‘ Let
0 Skt

(8153 8n—1) = (S1, -+ Ske1s Skt1, Skt2, - - - Sn)-

We claim that (as,...,a,) and (81, ...,38,_1) satisfy the product equality and inequalities.
. —1 ~
First, [[7_,a; = [[}_, s/a1 =[]}, 5;. For £ <k,

4 -1 -1 -1
o <1lo <Ils =115
J=2 J=1 J=1 J=1
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For { > k+1,

¢ ¢ -1
Haj < Hsj/al = Héj.
=2 j=1 j=1
So, there is Ay € UDV* in triangular form with diagonal entries as, ..., a,, where U,V €

M,,_, are unitary, and D = diag ($1,...,8,-1). Let

=) (M a)( )

is in upper triangular form with diagonal entries a4, ..., a, and singular values s1,...,s, as

desired. O

4.6 Diagonal entries and singular values

Theorem 4.6.1 Let A € M, have diagonal entries dy,...,d, such that |di| > -+ > |d,|

and singular values s > -+ > s,.

(a) For any 1 < k < n, we have Z;C:l |d;| < Z?:l s;. The equality holds if and only
if there is a diagonal unitary matriz D such that DA = Ay, @ Asgs such that Ay is

positive semidefinite with eigenvalues sy > -+ > sy.

(b) We have 23:11 |d;| — |dn| < 2?2—11 $; — Sn. The equality holds if and only if there
is a diagonal unitary matric D such that DA = (a;;) is Hermitian with eigenvalues

S1y.ySp_1, —Sp and ay,, < 0.

Proof. (a) Let S(s1,...,s,) be the set of matrices in M,, with singular values s; > -+ >

Sp. Suppose A = A A € S(s1,...,8,) with Aj; € My, such that |ay| + -+ - + |k
Ag1 Az

attains the maximum value. We may replace A by DA by a suitable diagonal unitary D € M,
and assume that aj; = |a;;| for all j =1,... ,n. If a;; # 0 for any j > k > i, then there is a
Qi Qij
aji  jj

unitary X € M, such that X ( ) has (1, 1) entry equal to

s = {|aal’ + lau*}'? > |aa|.

Let X € M, be obtained from I, by replacing the submatrix in rows and columns i, j by
X. Then diagonal entries of the leading k x k submatrix Ay of XA is obtained from that
of A by changing its (i,4) entry a;; to a; so that tr Ay > tr Ay, which is a contradiction.
So, Aj; = 0. Applying the same argument to A!, we see that A;5 = 0. Now, A;; has

singular values & > --- > &,.. Then A;; = PV for some positive semidefinite matrix P with
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eigenvalues &1, ..., & and a unitary matrix V' € M. Suppose V = U DU* for some diagonal
unitary D € M, and unitary U € M;. Then

tr Ayy = tr (PUDU*) = tr U*PUD < tr U*PU = tr P,

where the equality holds if and only if D = Iy, ie., A;; = P is positive semidefinite. In
particular, we can choose B = diag(si,...,S,) so that the sum of the k diagonal entries is

Z?Zl s; > Zle &; = tr Ay;. Thus, the eigenvalues of Aj; must be s1,. .., s, as asserted.

(b) Let A = (a;;) € S(s1, ..., s,) attains the maximum values Z?:_ll |aj;| = |ann|. We may
replace A by a diagonal unitary matrix and assume that a; > 0 for j = 1,...,n — 1, and
ann < 0. Let Aj; € M,,_1 be the leading (n — 1) x (n — 1) principal submatrix of A. By part
(a), we may assume that Aj; is positive semidefinite so that its trace equals to the sum of its
singular values. Otherwise there are U,V € M,,_; such that U*A;,V = diag (&1,...,&-1)
with &+ +&,-1 > ZJ L @j;- As aresult, (U*@[1])A(V@[1]) € S(s1,...,s,) has diagonal

entries dl, . dn 1, Qnp SUCh that

,_.

n—

d; Iann\>zaﬂ |Gn |,

<.
I
—-

which is a contradiction.

Next, for j = 1,...,n — 1, let B; = (ajj aj"). We show that |a;;| — || =

Apj  Gpn
s1(Bj) — s2(B;) and Bj; is Hermitian in the foilowing. Note that s1(B1)? + s2(B;)? =
laji|* 4 lanl? + |an;|? + |ana|? and s1(B;)s2(B;j) = |ajjanm — ajnan| so that —ajan, =
|ajjann| > 51(Bj)s2(Bj) — |ajnan;|. Hence,

(lajj| = lann])? = (aj; + ann)?* = a ;T gy, + 2,5,
s1(B))* + s2(B))* — (lajil* + lars|*) — 2(51(B;)s2(B;) — |ajnan;|)
= (s1(B;) — 52(B)))* = (laju| — laxs])*
< (s1(By) = s2(By))*.

IA

Here the two inequalities become equalities if and only if |a ;| = |ax;| and |ajnan;| = ajnan;,
i.e., aj, = a,; and B; is Hermitian.

By the above analysis, |a;;| — |an,| < s1(Bj) —s2(B;). If the inequality is strict, there are
unitary X,Y € M, such that X*B,Y = diag (s1(B;), s2(B;)). Let X be obtained from I,, by
replacing the 2 x 2 submatrix in rows and columns j,n by X. Similarly, we can construct
Y. Then X ,Y/ € M, are unitary and X*AY has diagonal entries cfl, e @n obtained from
that of A by changing (a;;, an,) to (s1(B;), s2(B;)). As a result,

n—1 n—1
i = ldnl > aj; = lanl,
j=1 j=1



which is a contradiction. So, Bj; is Hermitian for j = 1,...,n — 1. Hence, A is Hermitian,
and

trA=an+- -+ =an+- -+ a1 p-1 — Anp-

Suppose A has eigenvalues Ay, ..., A\, with |\;| = s;(A) for j =1,...,n. Because 0 > a,,, >
An, We see that tr A = ijl Aj < Z;le sj — sp. Clearly, the equality holds. Else, we have
B = diag (s1,...,8,) € S(s1,...,s,) attaining Z;:ll $; — Sp. The result follows. O

Recall that for two real vectors x = (z1,...,%,),y = (Y1, .. .,Yn), We say that x <, y is

the sum of the k largest entries of x is not larger than that of y for k=1,... n.

Theorem 4.6.2 Let dy,...,d, be complex numbers such that |dy| > -+ > |d,|. Then there

1s A € M, with diagonal entries dy, ... ,d, and singular values sy > --- > s, if and only if
n—1 n—1
(Jdu], .. s |dn]) <w (51,-..,50) and D ldsl = lda] < 55— sn
j=1 j=1

Proof. The necessity follows from the previous theorem. We prove the converse by
induction on n > 2. We will focus on the construction of A with singular values s1, ..., s,,
and diagonal entries dy,...,d,_1,d, with dy,...,d, > 0.

Suppose n = 2. We have d; +dy < 81+ S9,d; — dy < 81 — S9. Let A = (dlb 5) such

- 2

that a,b > 0 satisfies ab = sy55 — dydo and a? +b* = s+ s5 — d? — d3. Such a, b exist because
2(s189 — didg) = 2ab < a*> + b* = 5% + s5 — d} — ds.
Suppose the result holds for matrices of sizes up to n — 1 > 2. Consider (di,...,d,) and
(s1,...,8,) that satisfy the inequalities. Let k be the largest integer k such that s, > d;.
If k <n-—2, thereis B = (Cil Z) with singular values s, Sxy1, where § = sp+sp1 —dy.

One can check that (ds,...,d,) and (s1,...,Sk_1,8, Sk+2,- - -, Sn) satisfy the inequalities for
the n — 1 case so that there are unitary U,V € M,,_; such that UDV™* has diagonal entries

dy,...,d,, where D = diag (8, s1,...,Sk_1,Sk+2,---,Sn). Lhus,
A= (ll®U)(B®diag (s1,. -, Sk-1,Sk+2,-- -, 8n) ([1] B V)

has diagonal entries dy, ..., d, and singular values s1,...,s,.

Now suppose k > n — 1, let

n—1 n—2 n—2
$ = max {O,dn + 8, — sn,l,Zdj — ZSJ} < min {snl, Sp—1+ Sp —dpn, Y (s;—d;) + dnl} .
—1

j=1 j=1 j
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It follows that

(dna §) <w (Sn—la Sn)a |dn - '§| S Spn—1 — Sn,
n—2 n—2
(A1 dny) <w (S1,- - Sn2,8)  and Y dj—dp1 <Y 55— 5.
j=1 j=1

So, there is C' € M, with singular values s, _1,s, and diagonal elements s, d,. Moreover,
there are unitary matrix X,Y € M,_; such that Xdiag(si,...,s,_2,8)Y* has diagonal

entries dy,...,d,_1. Thus,

will have the desired diagonal entries and singular values. 0

4.7 Final remarks

The study of matrix inequalities has a long history and is still under active research. One of

the most interesting question raised in 1960’s and was finally solved in 2000’s is the following.

Problem Determine the necessary and sufficient conditions for three set of real numbers
ag > - > ap,by > -0 > by,c0 > -0 > ¢, for the existence of three (real symmetric)
Hermitian matrices A, B and C' = A+ B with these numbers as their eigenvalues, respectively.

It was proved that the conditions can be described in terms of the equality Z?Zl(aj +b;) =

>y ¢ and a family of inequalities of the form

k k
Z(aw +by;) 2 Z Cu;
j=1 Jj=1
for certain subsequences (uq, ..., ug), (v1,..., %), (w1, ..., wg) of (1,...,n).

There are different ways to specify the subsequences. A. Horn has the following recursive

way to define the sequences.

1. If k=1, then w; = uy + vy — 1. That is, we have a, + b, > cy1v_1.

2. Suppose k < n and all the subsequences of length up to £ — 1 are specified. Con-

sider subsequences (uy,...,ug), (vi,...,vx), (v1,...,vx) satisfying Z?Zl(uj +vj) =

2?21 wj+k(k+1)/2, and for any lenth ¢ specified subsequences (v, . .., o), (B1, ..., Be), (11, - - -

of (1,...,n) with ¢ < k,

¢
Z(“aj +vg;) > Zwﬂ,j.

Jj=1 J=1
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Consequently, the subsequences (uq, ..., ux), (v1,...,v%), (w1,...,wg) of (1,...,n) is a
Horn’s sequence triples of length £ if and only if there are Hermitian matrices U, V. W = U4V

with eigenvalues
u—1<u—2<--<uy—kv—-1<v-2< - <y—kw—-1<w—-2<---<w,—k

respectively. This is known as the saturation conjecture/theorem.
Special cases of the above inequalities includes the following inequalities of Thompson,

which reduces to the Weyl’s inequalities when k = 1.

Theorem 4.7.1 Suppose A,B,C = A+ B € M, are Hermitian matrices with eigenval-
ues a; > -+ > ap,by > ---b, and ¢, > --- > ¢, respectively. For any subequences
(wry ooy ug), (v1, .. ok), of (L,...,n), if (wi,...,wy) is such that w; = uj +v; —j < n
forall j=1,... k, then

Proof. We prove the result by induction on n. Suppose n = 2. If & = n so that
(u1,u2) = (v1,v2) = (1,2), then the equality holds. If k¥ = 1, then a; +b; > ¢;y;_1 for any
1+ 7 < 3 by the Lidskii inequality.

Now, suppose the result holds for all matrices of size n—1. If k = n so that (uq,...,u,) =
(v1,...,v,), then the equality holds. Suppose k < n. Let p be the largest integer such that
u; =jfor j =1,...,p, and let ¢ be the largest integer such that v; = j for j =1,...,¢q. We
may assume that ¢ < p < n. Else, interchange the roles of A and B.

Let {y1,...,yn} be an orthonormal set of eigenvectors of B and {z1,...,z,} be an or-

thonormal set of eigenvectors of C' so that
By; = a;y;, Czj = 2j, J=1...,n.

Suppose Z € M, ,—1 has orthonormal columns such that the column space of Z contains
21y gy Ygrs - Yn. Let A= Z*AZ B = Z*BZ,C = Z*CZ have cigenvalues a; > --- >

Qp_1, by > - > l;n,l, and ¢; > --- > ¢,_1, respectively. By induction assumption,

k k k
Zcuj-i—vj ]+ Z Cu] +(vj—1)— Z ZB]+ Z bufr(vjfl)f]
j=1 j=1

Jj=q+1 j=q+1
Because u; +v; —j = j for j =1,...,¢, and the column space of Z contains z1, ..., z,, we
see that ¢; = ¢j for j =1,...,q. For j =q+1,...,k, we have ¢y, 1y, j < Cyjv;—j-1, and
hence
q k
§ CuJJerfl + § Cuj+vj —J S E uj+vj71 + E CujJrvjfjfl-
Jj=q+1 j=1 Jj=q+1
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Because Bj <bjforj=1,...,q, and lA)ujHj,j,l = by, v, for j =q+1,... k as the column

spaces contains Y,41, . . ., Yn, we have
q k k
Z[;j + Z buj+(vj—1)—j < Z buj“’r]‘
j=1 j=q+1 J=1
The result follows. ]
Applying the result to —A—B = —C', we see that for any subsequences (uy, ..., ux), (v1, ..., V%)
and (wy, ..., wy) with w; = u; + v; — j such that u; + vy —k < n, we have
k k
Z(an—uﬁ-l + bn—vj+1) < Z(Cn—wj—s-l)‘
=1 j=1

Additional results and exercises

1. Suppose n = 3. List all the Horn sequences (uq,uz), (v1,vs), (wy,ws) of length 2, and
list all the Thompson standard sequences (us,us), (v1,v) and (wy, we) = (uy + vy —
1, U9 + Vg — 2)

2. Suppose A, B,C' = A+ B € M, are Hermitian matrices have eigenvalues a; > --- >
Qp,by > -+ > b, and ¢ > --- > ¢, respectively. Show that if C' = (¢;;) then
S e < 308 (a;+b)); the equality holds if and only if A = A116 Agy, B = B116 By
with Ay1, Byy € M such that A;; and By have eigenvalues a, > cdots > ay, by > --- >

by, respectively.

3. (Weyl’s inequalities.) Suppose A, B,C = A+ B € M, are Hermitian matrices. For
any u,v € {1,...,n} with u +v — 1 < n, show that A, (A) + A\,(B) > Auyv—1(A + B).

Hint: By induction on n > 2. Check the case for n = 2. Assume the result hold
for matrices of size n — 1. Assume v < u. Let {z,...,2,} and {y1,...,y,} be or-
thonormal sets such that By; = bjy; and Cz; = ¢jz; for j =1,...,n. If Z € M, ,_;
with orthonormal columns such that the column space of Z contains yy,...,y, and

2g+2, - - -, Zn. Argue that
Cutv1 = Musw2(Z*CZ) < N(ZTAZ) + Ny 1(Z"BZ) < ay + by.
4. Suppose C' = A + iB such that A and B has eigenvalues aq,...,a, and by,...,b,

such that |ay| > --- > |a,| and |by| > --- > |b,|. Show that if C has singular values
S$1,...,8p, then
(2402, ..., a2+b7) < (s1,...,s2) and (si+s2,...,52+451)/2 < (a3+b7,..., a2+b2).

Hint: 2(A% 4+ B?) = CC* + C*C.
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5. Suppose ¢ > a3 > ¢cg > as > -+ > Ap_q1 > ¢, > a, are 2n real numbers. Show
that there is a nonnegative real vector v € R™ such that D + vv' has eigenvalues

¢ > >¢, for D=diag(aq,...,a,).

Hint: Replace ¢; by ¢; + v and a; +« for j = 1,...,n, for a sufficiently large v > 0,
. . . I D

and assume that ¢, > a, > 0. By interlacing inequalities, there is C' = (yt Z) Show

that C = D + vv! has eigenvalues ¢; > -+ - > ¢,,.

6. Suppose A = (61 :) Show that

51(A) > 51(A) > 55(A) > 55(A) > -+ > 5,_1(A) > 5,(A).

7. (Extra credit) Suppose A, B € M,. For any subsequences (uy, ..., ug), (v1,...,v) and
(wi,...,wg)of (1,...,n)such that w; = uj+v;—jforj =1,... k, and up+vy,—k < n,

we have

H Su; (A)s,, (B) > H Suw; (AB).

Hint: By induction on n. Check the case for n = 2. Assume that the result holds for
matrices of size n — 1. If k = n, the equality holds. Suppose k < n. Let p be the
largest integer such that u; = j for all j = 1,...,p, and ¢ be the largest integer such
that v; = jforall j = 1,...,¢q. We may assume that ¢ < p. Let C = AB, {uy,...,u,}

and {vy,...,v,} be orthonormal sets such that
B*Buj = sj(B)*u; and C*Cuv; = 5;(C)%v;.

Suppose U, V' are unitary such that the first n — 1 columns span a subspace containing

B

Uty ooy U, Ugt2, - - - Uy, and V¥BU = <0

:) with B € M, 1. Let W be unitary such

AB
0 =

A
0
AB to finish the proof.

*

that W*BV = < :) Then W*ABV = ( ) Apply induction assumption on
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5 Norms

In many applications of matrix theory such as approximation theory, numerical analysis,
quantum mechanics, one has to determine the “size” of a matrix, how near is one matrix
to another, or how close is a matrix to a special class of matrices. We need concept of the
norm (size) of a matrix. There are different ways to define the norm of a matrix, and the

different definitions are useful in different applications.

5.1 Basic definitions and examples

Definition 5.1.1 Let V' be a linear space over F =R or C. A function v :V — [0, 00) if
(a) v(v) > 0 for all v € V; the equality holds if and only if v = 0.
(b) v(cv) = |c|v(v) for any c € F and v € V.
(c) v(u+v) <v(u)+v(v) for allu,v e V.

Example 5.1.2 Let V =F". Forv = (vy,...,v,)" € F", let
loo(v) =max{|v;| : 1,...,n} and {,(v) = (Z|vj|p)1/p forp>1
j=1

be the l«, nrom and the £, norm.

Note that £(v) = (327, [v;|*)!/? is the inner product norm.

For every p € [1,00], it is easy to verify (a) and (b). For p = 1,00, it is easy to verify
the triangular inequality. For p > 1, the verification of ¢,(u + v) < £,(u) + £,(v) is not so
easy. We may change all the entries of u and v to their absolute values, and focus on vectors
with nonnegative entries. to prove that the £, norm satisfies the triangle inequality 1 < p,

we establish the following.

Lemma 5.1.3 (Holder’s inequality) Let p,q > 1 be such that 1/p + 1/q = 1. For u =

(U1, ... up)t and v = (vi,...,v,)" with positive entries,
Zujvj < Lp(u)l(v).
j=1
The equality holds if and only if (u},...,uP)" and (vi,...,v1)" are linearly dependent.

Proof. Replace (u,v) by (u/ly(u),v/l,(v)). We need to show that u'v < 1. Note that for

two positive numbers a, b, we have
ab = exp(Ina + Inb) = exp((1/p) In(a”) + (1/q) In(d?))
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< (1/p) exp(In(a”)) + (1/q) exp(In(b?)) = a? /p + b?/q,

where the equality holds if and only if a” = b?. Thus, we have u,v, < u}/p + v}/q, and
Zuﬂ)]<€ )/p+ € (v)/qg=1,

where the equality holds if and only if u}] = vj for all j =1,...,n. O

Corollary 5.1.4 (Minkowski inequality) Suppose p € [1,00]. We have {,(u +v) < £,(u) +
0y (v).

Proof. The cases for p = 1,00 can be readily checked. Suppose p > 1. By the Holder
inequality, if 1 — 1/p = 1/q, then

n

Do+ = D uuy+ v vy + o)
j=1

J=1

< L) (g + v)P) Y+ L, (0) (O (uy +v;)P) s (p—1)g =p
j=1 j=1
n 1/q
= (Gp(u) + Lp(v)) (Z(Uj + Uj)p> :
j=1
n 1/q .
Dividing both sides by (Z e (g + Uj)p> , we get the conclusion. O

Next, we consider examples on matrices.

Example 5.1.5 Consider V' = M,,,,. Using the inner product (A, B) = tr (AB*) on M,, ,,

we have the inner product norm (a.k.a. Frobenius norm)

1]l = (tr AA)/2 = Zla\ )2 =) si(A)?
7=1

One can define the £,(A) = (3_; ; |a;;|P)'/P, and define the Schatten p-norm by

Sp(A) = Z s;j(A 1/p
7j=1

The Schatten oco-norm reduces to s1(A), which is also known as the spectral norm or operator
norm defined by
| Al = max{ly(Azx) : x € C", ly(x) < 1}.
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When m = n, the Schatten 1-norm of A is just the sum of the singular values of A, and
is also known as the trace norm.
One can also define the Ky Fan k-norm by Fi(A) = 2% s;(A) for k=1,...,m.

j=1

Assertion The Ky Fan k-norms and the Schatten p-norms satisfy the triangle inequalities.

Proof. To prove the triangle inequality for the Ky Fan k-norm, note that if C' = A +

o ¢y (0 A 0 B e s k
B, then (C* 0) = (A* 0) + (B* O)' By the Lidskii inequalities ), s;(C) <
Z?Zl(sj(A) + 5;(B)). So, we have proved s(C) <, s(A) + s(B). It is easy so show that if
(C1y vy Cm) =<w (V15«3 Ym), then £p(cr, ..o, em) < Lp(71,s- .., 7n). Thus, we have

sp(C) = £(s(C)) < p(s(A) + 5(B) < 6(5(A)) + £p(s(B)) = 5p(A) + 5,(B).

For A € M, one can define the numerical range and numerical radius of A by
W(A)={2"Az 2 € C", 2"z =1} and w(A)=max{|z"Az|: 2 € C", 2"z =1},
respectively. The spectral radius of A € M,, as

r(A) = max{|\| : A is an eigenvalue of A}.

Example 5.1.6 If A = (8 g), then

W(A) = {(fl,fg)A(QTl,[EQ)t : ‘1‘1’2 + |l’2|2 = 1} = {2;%1!13’2 : |[E1|2 + |$2|2 = 1}
= {2cosfsinfe” : 0 € [0,7/2],t €[0,2n)} ={u e C: |ul <1}

Note that the numerical radius is a norm on M,, (homework), but the spectral radius is

not.

Theorem 5.1.7 Let A € M,. Then W(A) is a compact convexr set containing all the

eigenvalues of A, and

r(A) <w(A) < s1(A) <2w(A).

Proof. Let x,y € C" be unit vectors, and o« = z*Azx, 8 = y*Ay € W(A). We need to
show that the line segment joining o and 3 lies in W (A). We assume « # ( to avoid trivial
consideration.

Note that W (A4 ul) = EW(A) + pu = {€x*Ax + p : x € C", z*z = 1}. We may replace
Aby B=(A—al)/(8 — «), and show that the line joining x*Bx = 0 and y*By = 1 lies in
W (B). We may further assume that z*By + y* Bz € R. Else, replace y by ey for a suitable
r € [0,2m).
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Now, let z(s) = [(1 — s)z + sy]/||(1 — s)x + sy|| so that

(1 — s)*x*Bx + s(1 — s)(x* By + y*Bx) + s*y*By .

2(s)"Bz(s) = (1 = )+ syl|®

W(B), s € 0,1],

has real values vary from 0 to 1 continuously as s varies in [0, 1]. So, [0,1] C W (B).

The set W(A) is compact means that it is bounded and contains all the boundary points.
It follows from the fact that W(A) is the image of the set of unit vectors in C™ under the
continuous function x — 2*Ax.

Now, if X\ is an eigenvalue of A, let x be a corresponding unit eigenvector of A\, then
¥ Az = X € W(A). So, r(A) <w(A). Also, we have

w(A) = max{|z*Az| : x € C", 2"z = 1} < max{|z"Ay| : z,y € C", 2"z = y'y = 1} < 51(A).

Finally, if A = H + iG with H = H*,G = G*, then there are unit vectors x,y € C" such
that

s1(A) < s1(H +1iG) < s1(H) + 51(GQ) = |[z*Hz| + |y Gy| < |o*Azx| + |y* Ay| < 2w(A). 0

Definition 5.1.8 A norm || - || on M,, is a matriz/algebra norm if
|AB| < |AIIBI  for all A, B € M,

Suppose v is a norm on F"™. Then the operator norm induced by v is defined by
|All, = max{v(Az) : x € C",v(z) < 1}.

Note that every induced norm is a matrix norm. The Schatten p-norms, the Ky Fan

k-norms, are matrix norms, but the numerical radius is not.

Example 5.1.9 The operator norm induced by the ¢1-norm on F™ is the column sum norm

defined by

Al = max{) " :lag|: £=1,...,n}.
=1

The operator norm induced by the s -norm on F™ is the row sum norm defined by
Al = max{} :lay|:£=1,...,n}.
j=1

Theorem 5.1.10 Let A € M,,. Then limy_,o, A*¥ =0 if and only if r(A) < 1.
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Proof. Let A = S(Jy®---®J;,)S™!, where Jy, ..., J; are Jordan blocks. Assume r(A) < 1.
We will show that A — 0 as £ — oo. It suffices to show that Jf — 0 as £ — oo for each
i=1,... .k

Note that if p satisfies |u| < 1 and N, = E1g + -+ Epp—1,m € My, then for £ > m,

m—1
14
(,u[m—l-Nm)Z:Z( )/prp—>0 as { — o0
— \P
7=0
as limy_, (f;) pt=P = 0. Conversely, if Az = px for some || > 1 and unit vector z € C",

then A*x = ¥z so that A 4 0 as k — oo. OJ

Theorem 5.1.11 Let || - || be a matriz norm on M,. Then

lim ||AF||/* = r(A).

k—o0

Proof. Suppose p is an eigenvalue of A such that |u] = r(A). Let x be a unit vector such
that Az = pz. Then |pfl||[x--- ]| = [|A*[z- - ]| < [|A*|[[[z - - 2] So, [u*] < [ A*]].

Now, for any ¢ > 0, let A. = A/(r(A) + ¢). Then lim;_.,, A¥ = 0. So, for sufficiently
large k € N we have ||A*/(rA+¢)¥|| < 1. Hence, for any € > 0, if k is sufficiently large, then

P(A) < JAMYE < p(A) 4,
The result follows. O

Remark In the proof, we use the fact that the function x — ||z|| is continuous. To see this,

for any € > 0, we can let § = ¢, then ||z — y|| < J, we have |||z| — |Jy||| < ||z —y|| = =«.

Corollary 5.1.12 Suppose || - || is a matriz norm on M, such that ||A| > r(A) for all
A€ M,. If |A|| <1, then A* =0 as k — oco.

5.2 Geometric and analytic properties of norms

Let v be a norm on a linear space V. Then
B,={zeV: :v(x) <1}
is the unit ball of the norm v.

Theorem 5.2.1 Let v be a norm on a nonzero linear space V. Then B, satisfies the fol-

lowing.
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(a) The zero vector 0 is an interior point.

(b) For any p € F with |pu| =1,
B, =uB, ={pzx:x€B,}.

(c) The set B, is convex. That is if x,y € B,, then tx + (1 —t)y € B,.

Conversely, if V' is finite dimensional linear space over F and B is a set satisfying (a) —

(c), then we can define a norm || - || on V by ||z|| =0, and for any nonzero x € V,
|z|| = sup{t > 0: 2/t € B} = max{t > 0:z/t € B}.

Theorem 5.2.2 Suppose v; for j € J is a family of norm on a linear space V' so that 0 is
an interior point of NB,,. Then NB,, is the unit norm ball of v defined by

v(xz) =sup{y;(x):j € J}.

5.3 Inner product norm and the dual norm

Recall that for a linear space V', a scalar function on V' x V' is an inner product denoted by
(x,y) € F if it satisfies

(a) (z,z) > 0, where the equality holds if and only if z = 0,
(b) {az +by, z) = afz, z) + bly, 2),
(¢) (z,2) = (z,2),

for any a,b € F,z,y,z € V.
Theorem 5.3.1 Suppose V' is an inner product space. Then for any x,y € V,
||| = (z, )"/ xeV
18 a norm satisfying the Cauchy inequality
(@, )] < =[]yl
and the parallelogram identity
e+ yll* + llz = yll* = 2|z + [ly[I*).

Theorem 5.3.2 Suppose || - || is a norm on a linear space V' satisfying the parallelogram

identity. Then one can define an inner product by (x,y) = a + ib with
2a = [lz +yl* = [l2* = lyl* and 20 =z +ay|* — [«]* — [yl

such that ||z|| = (z,2)Y/? for all z € V.
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Remark 5.3.3 Suppose V' is an inner product space, and v is a norm on V. One can define

the dual norm on V by
vP () = sup{|(z,y)| : v(y) <1},
We have (vP)P = v.

Example 5.3.4 The dual norm of the £, norm on F™ is the {, norm with 1/p+1/q = 1.

The dual norm of the Schatten p norm on M,,, s the Schatten q norm on My, , with
1/p+1/qg=1.
The dual norm of the Ky Fan k-norm on M,, ,, withm > n is FI(A) = max{ 7, s;(A),s1(A)}

5.4 Symmetric norms and unitarily invariant norms

A norm on F” is a symmetric norm if ||z|| = ||Pz|| for all permutation matrix P or diagonal
unitary (orthogonal) matrix P.

A norm on M, ,(F) is a unitarily invariant norm (Ul norm) if ||[UAV|| = ||A] for any
unitary U € M,,,V € M,, and any A € M,, .

Theorem 5.4.1 Suppose m > n. Every Ul norm || - || on M,,,, corresponds to a symmetric

norm v on R™ such that
Al = v(s(A)) for all A € M,, .

Proof. Suppose || - || is a Ul norm. Then [[A[| = || 37, s;(A)Ej;|| for any A € M.
Define v : F" — R by v(z) = || Y27, |v;|Ejl for x = (21,...,2,)" € R". Then it is easy to

verify that v is a symmetric norm.

Conversely, if v is a symmetric norm on R™, then define || - || by ||A|| = v(s(A)) for any
A € M, ,. Then one can check that || A|| is a norm using the fact that s(A+B) < s(A)+s(B)
so that v(s(A + B)) < v(s(A) + s(B)). O

Denote by G P, the set of matrices equal to the product of a permutation matrix and a
diagonal unitary (orthogonal) matrices if F = C (if F = R). Let ¢ = (¢q,...,¢,) € R™ with
c1 > -+ > ¢, > 0. Define the c-norm on F” by

v.(z) = max{c'Pz : P € GP,}
and the c-spectral norm on M,, ,(F) by
[A]le = ve(s(A)).

Ife=(1,...,1,0,...,0), we get the v4(x) and the Ky Fan k-norm Fi(A).
~——
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Lemma 5.4.2 Suppose v on R™ is a symmetric norm. Then for any x € R",
v(z) = max{r.(z) s c= (c1,...,cn) 1 > -+ > o, (c) = 1}
Suppose || - || is a UI norm on My, ,(F). Then for any A € M, ,,
|A| = max{||A|. : C = s(C) for some C € My, ||C||* = 1}.

Theorem 5.4.3 Let x,y € ™. The following are equivalent.
(a) ve(z) < w(y) forallk=1,... n.
(b) v.(z) < v.(y) for all nonzero ¢ = (c1,...,¢,) with ¢y > -+ > ¢, > 0.

(c) v(z) < v(y) for all symmetric norms v.

Proof. Suppose (a) holds. Then for any ¢ = (¢1,...,¢,) with ¢q,. .., ¢,, if we set d,, = ¢,
and dj =c; —j+1for j=1,...,n—1, then v.(z) = 37, d;v;(z). Thus,

ve(r) = ZdjVj(w) < Zdjvj(y) = chyj = v(y).

Suppose (b) holds. Let v be a symmetric norm. Then for any ¢ = (¢1,...,¢,) with
c1 >+ > ¢, >0 with v9(c) = 1, we have v.(z) < v.(y). Thus, v(x) = v(y).
The implication (b) = (c) is clear. O

Theorem 5.4.4 Let A, B € M,, ,(F") with m > n. The following are equivalent.
(a) Fr(A) < Fi(B) forallk=1,... n.
(b) ||Alle < [|B||e for all nonzero ¢ = (c1,...,¢,) with ¢y > -+ > ¢, > 0.

(c) |All < ||B|| for all UI norms || - ||.

Proof. Similar to the last theorem. O

Theorem 5.4.5 Let Ry, C M,,,, be the set of matrices of rank at most k with m > n > k.
Suppose || - || is a UI norm. If A € My, such that U*AV = 377 s;(A)Ej;, then Ay =
U s;(A)VE;)V* satisfies

=1

JA— Al < A= X||  for all X € Ry
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Proof. Let X € Ry, and C = A — X. Then s;(X) =0 for j > k so that

¢ ¢ ¢
D sai(A) =) (s4(A) = sk (X)) <D s5(0), forall (=1,...,n—k.
j=1 =1 j=1
So, (sk+1(A), ..., 5,(A),0,...,0) <, s(C) and ||A — Ax]| < ||IC|| = []A — X]|. O

Theorem 5.4.6 Let A € M, and || -|| be a unitarily invariant norm.
(a) |A—(A+A")/2|| < ||A— H|| for any H= H* € M,.
(b) JA— (A —A*")/2|| < ||]A =G| for any G = G* € M,,.
Proof. (a) Let H € M, be Hermitian, and let A — H = H +iG. Suppose Q € M,

is unitary such that Q*GQ is in diagonal form gy, ..., g, such that |g;| > -+ > |g,|. If
dy,...,d, are the diagonal entries of Q*(H + iG)Q, then

s(G) = (g1l [gnl) <w (ldul, - -, [dn]) <w (A= H).
Thus, |G| = [|A = (A+ A")/2[ < [[A - H].
(b) Similar to (a). O

Theorem 5.4.7 Suppose A, B € M, have singular values aq > --+ > a, and by > --- > b,.
Then for any UI norm || - ||,

Z aj +bn_jy1) Byl < [JA+ B < HZ a; + bj) Byl

7=1
Proof. By Lidskii inequalities, for all k =1,... n,

k

k
> [A(A+B) - Z and ZA” A, (=B) <> N(A—(-B)).

=1

We get the majorization result. O

Theorem 5.4.8 Let || - || be a UI norm on M,,.

(a) If P is positive semidefinite, then |[P — I|| < ||P — V|| < [|P + V|| for any unitary
VeM,.

(b) If A =UP such that P is positive semidefinite and U is unitary, then
|A=U| < ||A-V] for any unitary V € M,
Proof. (a) Apply the previous theorem with P = A and B = I.
(b) Use the fact that |A—=V|| =||UP-V| =||P-UV|>|P-1I|=|UP-U]|.
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5.5 Errors in computing inverse and solving linear equations

Theorem 5.5.1 If B € M, satisfies r(B) < 1, then I — B is invertible and

e in.
k=0

Consequently, if A € M, is invertible and E satisfies (A7 E) < 1, then A+ E is invertible

and
oo

AT —(A+ B =) (A
k=1
Furthermore, if || - || is a matriz norm on M,, such that ||A™ E|| < 1 and k(A) = || A7|||All,
then

A" —(A+ BN _ ARl _ K(A) =1
A= L= ATE] T = s(A)UEN/AIL 1AL
Proof. Use the identity (I — A)(Z;c:l AJ) =T — AM1 and letting k — oo. O

The quantity x(A) is called the condition number of A with respect to the norm || - ||.
Important implication, the change of the inverse will affected by x(A). For example, if
|Al| = s1(A), and A is unitary, then

AT —(A+E)H B
A= — Al - 11E]

So, the computation of A is very “stable”.

We can apply the result to analysis the solution of Az = b.

Corollary 5.5.2 Let A, E € M, and x,b € C" be such that Ax = b and (A+ E)z = b.
Suppose A and (A+ E) are invertible.

T—32=[A"T"-(A+E)b=[A"—-(A+ E) A .

Suppose || - || is a matriz norm on M,, such that ||A E|| < 1, and if v is a norm on C" such
that v(Bz) < ||B|lv(2) for all B € M,, and z € C". If k(A) = || A7 |||Al|, then

va—d) _ JACEl w4 B
V@) S T [AE] = 1= s(A)E/TAD 1A
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6 Additional topics

6.1 Location of eigenvalues

Theorem 6.1.1 (Gershgorin Theorem) Let A € (a;;), and let

Gi(A) ={p € C:|u—ajl <) lal}.
i£]
Then the eigenvalues of A lies in G(A) = Uj_,G;(A). Furthermore, if C = Gy, (A)U---U
Gi,(A) form a connected component of G, then C contains exactly k eigenvalues counting

multipicities.

Proof. Suppose Av = \v with v = (vq,...,v,). Then fori=1,... n,

)\Ui — Q40 = E Clijl)j.
J#i

Suppose v; has the maximum size. Then

— Q| = ;U5 /U] > il
A= aul =) ayo;/ol < ay|

J# J#

To prove the last assertion. Let A, = D + t(A — D) with D = diag (a1, ..., aum).
Then Ay has eigenvalues aqq, ..., a,,, and the eigenvalues and Gershgorin disk will change
continuously according to ¢t € [0, 1] until we get A; = A.

One can apply the result to A’ to get Gershgorin disks of different sizes centered at
A11, - - -, Apn- Also, one can apply the result to ST'AS for (simple) invertible S such that
G(S7'AS) is small. In fact, if A is already in Jordan form, then for any ¢ > 0 there is
S such that S~'AS has diagonal entries Ai,...,\, and (4,7 + 1) entries equal 0 or & for

1=1,...,n—1, and all other entries equal to 0. So, we have the following.
Theorem 6.1.2 Let A € M,,. Then

N G(STIAS) = {M(A), ..., (A}

SeM, is invertible

One may use the Gershgorin theorem to study the zeros of a (monic) polynomial, namely,
one can apply the result to the companion matrix Cy of f(x) to get some estimate of the

location of the zeros. One can further apply similarity to Cy to get better estimate for the

zeros of f(z).
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6.2 Eigenvalues and principal minors
Theorem 6.2.1 Let A € M,, with eigenvalues A\, ..., \,. Then
det(zI —A)=(z2—A) - (z—=A) = 2" —a12" "+ ap2" % — -+ (—1)"ay,

where form=1,...,n,

A = S Ay .oy An) = Z Njy + 4+ \0)

1<ji<<gm<n
s the sum of all m x m principal minors of A.

Proof. For any subseteq J C {1,...,n}, let A[J] be the principal submatrix of A with row
and column indices in J. Consider the expansion det(zI — A). The coefficient of 2"/ comes

from the sum of the leading coefficients of (—1)7 det(A[J])det(zI — A[J]) for all different
j-element subsets J of {1,...,n}. The result follows. O

6.3 Nonnegative Matrices

In this section, we consider positive (nonnegative) matrices A, i.e., the entries of A are
positive (nonnegative) real numbers. Denote by |A| the matrix obtained from A by changing

its entries to their absolute values (norm). Similarly, we consider |v| of a vector v.

Theorem 6.3.1 (Perron-Frobenius Theorem) Suppose A € M,, is nonnegative such that A*

18 positive for some positive integer k. Then the following holds.

(a) r(A) > 0 is an algebraically simple eigenvalue of A such that r(A) > |\| for all other
eigenvalue X of A.

(b) There is a unique positive vector x with {1(x) =1 such that Ax = r(A)z, and there is
a unique positive vector y with y'x =1 and y*A = r(A)y".

(c) Let x and y be the vectors in (b). Then (r(A)~tA)™ — xy' as m — oo.

We first prove a lemma.

Lemma 6.3.2 Suppose A € M, is nonnegative with row sums ry,...,7y.
(a) For any nonnegative matriz P, r(A) < r(A+ P).
(b) If all the row sums are the same, then r(A) =ry. In general,
min{r; : 1 <i<n} <r(4A) <max{r;: 1 <i<n}.
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Proof. (a) If B = A+ P, then for any positive integer k, B¥ — A* is nonnegative so that
[A*le.. < |B*|le... Hence,
r(A) = Jim |45} < Jim [ BY)F = r(B).
k—o0 e k—o0 e

(b) Suppose all the row sums are the same. Let e = (1,...,1)". Then Ae = rqe so that

ry is an eigenvalue. By Gershgorin Theorem all eigenvalues lie in
U?:l {M eC: |/JJ - aii| < Zj#i aij} .

Thus, all eigenvalues lie in the set {x € C: |u| < ri}. Hence, r; = r(A).

In general, let P be a nonnegative matrix such that B = A+ P has all row sum equal to
[Allee- Then r(A) < 7(B) = [[A]le..

Similarly, let @) be a nonnegative matrix such that B — () is nonnegative with all

=A i
row sum equal to 7, = min{r; : 1 <7 < n}. Then r, = r(B) < r(A). O

Proof of Theorem 6.3.1. Assume B = A* is positive. Then 7(B) is larger than the
minimum row sum of B so that 0 < 7(B) = r(A)*. Note that Buv is positive for any nonzero

vector v > 0.

Assertion 1 Let \ be an eigenvalue of B. Fither || < r(B) or A = r(B) with an eigenvector
x such that x = e®|z| for some 6 € R.

Proof. Let A be an eigenvalue of B such that |A\| = r(B), and z be an eigenvector. Then
r(B)|z| = |r(B)z| = |Bx| < B|z|. We claim that the equality holds. If it is not true, we can
set z = Blz| so that y = (B — r(B))|z| = z — r(B)|z| # 0 is nonnegative. Then

0 < By = Bz —r(B)B|z| = Bz — r(B)z=.
So, z = (21,...,2,)" has positive entries, and for Z = diag (21, ..., 2,), we have
7 YBZe—1r(B)Ze) = Z'BZe —r(B)e = Z 'By > 0.

If follows that Z~'BZ has minimum row sum 7(B) + ¢, where § = (.(Z 'By) > 0. So,
r(Z7'BZ) > r(B) + §, which is a contradiction.

Now, r(B)|z| = B|z| has positive entries, and |Bz| = r(B)|z| = B|z|. Thus, z = €?|z|,
i.e., x is the eigenspace of r(B) and A\ = r(B). The proof of Assertion 1 is complete.
Assertion 2 The value r(B) is a simple eigenvalue of B with a unique positive positive
eigenvector x satisfying e'x = 1 and a unique positive left eigenvector y such that y'z = 1.

Moreover, there is an invertible matriz S € M, such that x is the first column of S and iy
is the first row of S™' satisfying S~'BS = [r(B)| ® By with r(B;) < r(B).

20



Proof. Suppose Bu = r(B)u and Bv = r(B)v for two linearly independent vectors u
and v such that e'|lu| = e'lv| = 1. By the arguments in the previous paragraphs, we see
that there are 0, ¢ € R such that u = e?|u| and v = ¢*|v|, such that |u|, |v| have positive
entries. So, there is § > 0 such that |u| — S|v| is nonnegative with at least one zero entry.
We have r(B)(|u| — S|v|) = B(|u| — B|v]), and B(|u| — 5|v|) has a positive entries, which is

a contradiction. So, |u| = |v|.

Let x be the unique positive eigenvector such that Bx = r(B)z satisfying ez = 1.
Then we can consider B and obtain a positive vector Bfy = r(B)y satisfying z'y = 1. Let
S = [z|S;] € M,, be such that the columns of 'S} = [0,...,0] € R~ Then z is not in
the column space of S; because y'x =1 # 0. So, S is invertible. Moreover, y'S = [1,0,...,0]
so that y is the first row of S~1. Now, if S~!BS = C, then SC = BS has first column equal
r(B)e;. Thus, the first column of C'is r(B)e;. Similarly, the first column of CS™! = S™!'B
equals r(B)y'. Thus, the first row of C' is r(B)e}. Hence, S™'BS = [r(B)] & By such that
r(B1) < r(B). Assertion 2 follows.

Assertion 3 The conclusion of Theorem 6.3.1 holds.
Proof. Note that the vectors  and y in Assertion 3 are the left and right eigenvectors of

A corresponding to a simple eigenvalue A of A with |[A| = r(A). Now, Ax = Az implies that
A =7(A). So, STTAS = [r(A)] ® A, such that r(A;) < r(A). Finally,

lim [A/r(A)]™ = lim S([1] @ (A;/r(A)™)S™ =S([1] @ 0,_1)S™ = 23"

m—00 m—00 O]

In general, for any nonnegative matrix A € M,,, we can consider A, = A + eee! for some
positive € > 0 so that the resulting matrix is positive so that r(A.) is a simple eigenvalue of

A.) with positive left and right eigenvectors z. and y.. By continuity, we have the following.

Corollary 6.3.3 Let A € M,, be a nonnegative matriz. Then r(A) is an eigenvalue of A

with at least one pair of nonnegative left and right eigenvector.

For a nonnegative matrix A, r(A) is call the Perron eigenvalue of A, and the corresponding

nonnegative left and right eigenvectors are called the Perron eigenvectors.

Example 6.3.4 Note that A* is not positive for any positive integer k in all the following.
If A= 1,, then r(A) = 1 and all nonzero vectors are left and right eigenvectors.

If A= (é 1), then r(A) = 1 with right and left eigenvectors x = (1,0)!/2 and y = (0, 1)".

If A = <1é2 1{2), then r(A) = 1 with right and left eigenvectors x = (1,1)'/2 and

y = (0,2)".

o1



If A= ((1] é), then r(A) = 1 with right and left eigenvectors x = (1,1)'/2 y = (1,1)".

A row (column) stochastic matrix is a matrix with nonnegative entries such that all row
(colum) sums equal one. It appear in the study of Markov Chain in probability, population
models, Google page rank matrix, etc. If A € M, is both row and column stochastic, then

it is doubly stochastic.

Corollary 6.3.5 Let A be a row stochastic matriz. Then r(A) = 1. If Ak is positive, then
r(A) is a simple eigenvalue with a unique positive left eigenvector x satisfying €'z =1, and

a unique positive left eigenvector y such that A* — xyt as k — oco.

6.4 Kronecker (tensor) products
Definition 6.4.1 Let A = (a;;) € My, n, B = (bys) € M,,. Then A® B = (a;;B) € Myypns-

Theorem 6.4.2 The following equations hold for scalar a,b and matrices A, B, C, D) pro-
vided that the sizes of the matrices are compatible with the described operations.

(a) (@A+bB)®C=adA®C+bB®C, C® (aA+bB)=aC® A+bC ® B.

(b) (A® B)(C® D)= (AC) ® (BD).

Proof. (a) By direct verification. (b) Suffices to show (A® B)(C; ® Dy,) = (AC;) ® (BDy,)
for all columns C; of C' and Dy, of D. [

Corollary 6.4.3 Let A, B be matrices. Then f(A® B) = f(A) ® f(B) for f(X) = X, X*
or X™.
(a) If A, B are invertible, then (A® B)™' = A~' @ B!,
(b) If A and B are unitary, then so is A ® B with inverse (A ® B)* = A* @ B*.
(c) If STYAS and T='BS are in triangular forms, then so is (S®@T) " (A® B)(S®T).
(d) If A has eigenvalues ay, ..., a, and B has eigenvalues by, ..., b,, then A® B has eigen-
values

abj with 1 < ¢ <m,1 <j <n;ifax;,y; are eigenvectors such that Az; = a;,x; and
By; = b;y;,

then (A® B)(z; ® j) = a;bj(z; ® y;).
(e) If A and B have singular value decomposition A = UyD1V}* and B = Uy DsVy', then the
equation

(A® B)(Vi ® V,) = (Uy ® Us)(Dy ® Ds) will yield the information for singular values
and

singular vectors.
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We have the following application of the tensor product results to matrix equations.
Theorem 6.4.4 Let A€ M,,, B € M, and C € M,,,,. Then the matriz equation
AX+XB=C X €My,

can be rewritten as (I, @ A)vec(X) + (B' @ I,)vec(X) = vec(C), where for Z € My, , we
have vec(Z) € C™ with the first column of Z as the first m entries, second column of Z as
the next m entries, etc.

Consequently, the matriz equation is solvable if and only if vec(C) lies in the column
space of I, ® A+ B'® I,,,. In particular, if I, @ A+ B ® I, is invertible, then the matriz

equation is always solvable.

The Hadamard (Schur) product of two matrices A = (a;;), B = (bij) € M, is defined
by AoB= (aijbij).
Corollary 6.4.5 Let A, B € M,, .
(a) Then sp(A® B) > sp(AoB) fork=1,...,m.
(b) If m = n, then s,_;11(Ao B) > s2 411 (A® B) fork=1,...,n.

(c) If A, B are positive semidefinite, then so is Ao B.

Remark Note that if A, B € M, are invertible, unitary, or normal, it does not follow that

A o B has the same property.
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6.5 Compound matrices

Let A € My, and k < min{m,n}. Then the compound matrix C,,(A) is of size () x (})

with rows labeled by increasing subseqeuence r = (rq,...,7) of (1,...,m) and columns
labeled by increasing subseqeuence s = (sq,..., %) of (1,...,n) in lexicographic order such
that the (r,s) entry of C,,(A) equals det(A[r, s]), where A[r,s] € My, is the submatrix of A

with rows and columns indexed r and s, arranged in lexicographic order.
Example 6.5.1 Let A € My. Then Cy(A) € Mg with (r1,72), (1, S2) entry equal to det(A[ry, ro; s1, S2)).

It is easy to check that Cy(A') = Ci(A)!, Cr(A*) = Cp(A)*, ete.
We will prove a product formula for the compound matrix. The proof depends on the

following result which generalizes the Cauchy-Binet formula.

Theorem 6.5.2 Let A € M,,,, and B € M,,,,. Then for any 1 < k < m, the sum of the
k x k principal minors of AB is the same as that of BA € M,,.

Note that when & = m < n, the above result is known as the Cauchy Binet formula.
Proof. Recall that if

AB 0 0, O (I, A
P_<B on>’ Q_<B BA> and S‘(o [n>’
then S is invertible and
AB 0 I, A\ (AB ABA\ (I, A\ (0, 0\ _
o=y o) (5 0)=(% Ba)=(5 2) (5 5)=se
Thus, P and () are similar, and
2" det(zI, — BA) = det(zlpyn — Q) = det(zl,4, — P) = 2" det(21,,, — AB).

Thus the sum of the kth principal minors of P and that of ) are the same. Evidently, the
sum of the kth principal minors of P are the same as that of AB, and the sum of the kth

principal minors of () are the same as that of BA. The result follows. OJ
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Theorem 6.5.3 Let A € M,,,,, B € M,, and k < min{m,n,p}. Then Cx(AB) =
Ci(A)Cr(B).

Proof. Let I'.; be the set of length k increasing subsequence of (1,...,r) for r > k.
Consider the entry of Cy(AB) with row indexes r = (ry,...,7x) € I, and column indexes
s = (s1,...,5¢) € I Let A e My, be obtained from A by using its rows indexed
by (r1,...,7%), and let B e M, be obtained from B by using its columns indexed by
(s1,...,5). Then the (r,s) entry of Cx(AB) equals det(AB) = Cy,(A)Ci(B) by the Cauchy
Binet formula. Note that Cj,(A)Cy(B) is the (r, s) entry of Cy,(A)Cy(B). The result follows.
O

Corollary 6.5.4 Let A € M, and k < n.
(a) If A is invertible (unitary), then so is Cy(A).

(b) Suppose A = UTU* is in triangular form. Then Cy(A) = Cy(U)Cy(T)Cr(U*), where
Cr(T) is in triangular form. Consequently, Cy(A) has eigenvalues H?Zl Ai; (A).

(c) Suppose U*AV = D with D =377, s;(A)Ej;, where U,V are unitary. Then
Cr(U")Cr(A)Cr (V) = Cr(D).
Consequently, Cx(A) has singular values H?Zl 5i,(A), 1 <0 <--- < <.

Corollary 6.5.5 Let A € M, with eigenvalues A\1(A), ..., A\ (A) satisfying |A(A)] > ---
|IAn(A)|. Then

v

k k
TN <[] si(4) forj=1,...,n.
j=1 J=1
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6.6 Additive compound

Let A€ M, and 1 <k <n, and

Cr(tl, + A) = Ck(A) + tDR(A) + t* Doy + t* Dy p(A) + - - - + tkl(n).

k
The matrix Dy(A) is called the additive compound of A.
Note that Dy(aA + bB) = aDy(A) + bDy(B) for any a,b € C, A, B € M,,.

Theorem 6.6.1 Let A € M,. Then Dy(S7tAS) = Ci(S) ' Dip(A)Cy(S) so that A has
eigenvalues Zle Ai; (A) with 1 <y < -+ <ip < n. Consequently, if A is normal (Hermi-

tian, positive semi-definite) then so is Dy(A).

Corollary 6.6.2 Let A € M,, be Hermitian. Then
k k
D (A <D ONA) <D s(A).
j=1 j=1 j=1

Theorem 6.6.3 Let A,B € M,. Then Dy(AB) = Dy(AB — BA) = Dy(A)Dy(B) —
Dy(B)Dy(A). Consequently, if A and B commute, then so do Dy(A) and Dy(B).

Proof. The proof follows from the fact that Dy(X) can be written as

k
VY (e 0L,oXelLo--el,|V,
= T T
where V' € Mnkx(n) such that V*V = I(n) and the columns of V' is a basis for the subspace
k k

of C™ spanned by

{Zx(a)ea@l)@--@ea(m:1§¢1<---<z‘k§n},

€Sy,

where x(0) =1 if 0 € S is an even permutation and x(o) = —1 otherwise. O
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6.7 More block matrix techniques

All A12
A21 A22

p 0 Ay A _ Ay Aqo
—A21A1_11 Ik Agr Ago 0 AZZ_A21A1_11A12 '

The matrix Ay — A1 A7 Ajs is the Schur complement of A with respect to Q;. Clearly, it

Schur Complement Let A = < > such that A;; € M, is invertible. Then

is useful for block Gaussian elimination. Also, if A is invertible, then the Schur complement
if the n — k by n — k submatrix in A~!.
If A=! exists, then Ay — A21A1’11A12 is invertible and

Al = (An Aig >_1 ( I 0 ) _ (* * )
0 Ay — A21Af111412 A21Af11 In_i * (Ao — 14211417111412)_1 '
So, (Ao — A9 A} Ap)7Lis the (n — k) x (n — k) matrix in the right bottom block of A~

All A12

such that Ay; € M, is invertible.
Ay A22) s Ak Y

Block Hermitian matrices Suppose A = (

Ifs= ( f -1 | )’ then SAS* = Ay & (Age — A21A1_11A12)-
_A12A11 ]n—k
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