
Math 408 Advanced Linear Algebra Homework 4 Sample Solution

1. (12 points) Let A =

(
1 1− i i
2 0 0

)
.

(a) First compute

det(AA∗ − zI) = det

(
4− z 2

2 4− z

)
= (4− z)2 − 4 = z2 − 8z + 12 = (z − 6)(z − 2).

Thus s1 =
√

6 and s2 =
√

2.

(b) We want to find orthonormal vectors u1, u2 ∈ C2 and orthonormal vectors v1, v2 ∈ C3

such that A =
√

6u1v
∗
1 +
√

2u2v
∗
2. The vectors v1, v2 are unit eigenvectors of A∗A

corresponding to the eigenvectors 6 and 2 of AA∗, respectively. (Note eigenvectors
corresponding to different eigenvalues are always orthogonal.)

Nul(A∗A−6I) = Nul

 −1 1− i i
1 + i −4 −1 + i
−i −1− i −5

 = Nul

1 0 −3i
0 1 1− i
0 0 0

 = Span


 3i
−1 + i

1


Nul(A∗A−2I) = Nul

 3 1− i i
1 + i 0 −1 + i
−i −1− i −1

 = Nul

1 0 i
0 1 1− i
0 0 0

 = Span


 −i
−1 + i

1


So, we can let

v1 =
1

2
√

3

 3i
−1 + i

1

 and v2 =
1

2

 −i
−1 + i

1

 .
Then

u1 =
1√
6
Av1 =

1√
2

[
i
i

]
and u2 =

1√
2
Av2 =

1√
2

[
i
−i

]
.

A =
√

6u1v
∗
1 +
√

2u2v
∗
2 =

1

2

(
3 1− i i
3 1− i i

)
+

1

2

(
−1 1− i i
1 −1 + i −i

)
(c) From (b), we can write A = Y SW ∗ where

Y =
1√
2

(
i i
i −i

)
, S =

(√
6 0

0
√

2

)
and W =


3i√
12

−i
2

−1+i√
12

−1+i
2

1√
12

1
2

 .

Since Y is unitary, we have Y Y ∗ = I2 = Y ∗Y and W ∗W = I2. Then

A = Y SW ∗ = Y S(Y ∗Y )W ∗ = (Y SY ∗)︸ ︷︷ ︸
P

(YW ∗)︸ ︷︷ ︸
V

Then we can let P = Y SY ∗ and V = YW ∗. Theorem 2.2.5 guarantees P is positive
semidefinite and V V ∗ = (YW ∗)(WY ∗) = Y (W ∗W )Y ∗ = Y Y ∗ = I2. More explicitly,

P =
1√
2

(√
3 + 1

√
3− 1√

3− 1
√

3 + 1

)
and V =

i

2
√

6

(
(−3 +

√
3)i −(1 + i)(1 +

√
3) 1 +

√
3

−(3 +
√

3)i −(1 + i)(1−
√

3) 1−
√

3

)
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(d) Similar to (c), we let U = YW ∗ and Q = WSW ∗. That is,

U =
i

2
√

6

(
(−3 +

√
3)i −(1 + i)(1 +

√
3) 1 +

√
3

−(3 +
√

3)i −(1 + i)(1−
√

3) 1−
√

3

)
and

Q =
1

2
√

6

 3 +
√

3 (1− i)(3−
√

3) (3−
√

3)i

(1 + i)(3−
√

3) 2(1 +
√

3) −(1− i)(1 +
√

3)

−(3−
√

3)i −(1 + i)(1 +
√

3) 1 +
√

3


So that

A = Y SW ∗ = Y (W ∗W )SW ∗ = (YW ∗)(WSW ∗) = UQ.

Note that UU∗ = (YW ∗)(WY ∗) = Y (W ∗W )Y ∗ = Y Y ∗ = I2. Q is positive semidefinite
since we can write it as Q = BB∗, where B = W

√
S and

√
S is just the diagonal matrix

whose diagonal entries are square roots of the diagonal entries of S.

(e) We choose U = Y and V =
[
W w

]
where w is a unit vector orthogonal to the columns

of W . The vector w is also an eigenvector of A∗A corresponding to 0.

Nul(A∗A) = Nul

 5 1− i i
1 + i 2 −1 + i
−i −1− i 1

 = Nul

1 0 0
0 1 −1

2 + 1
2 i

0 0 0

 = Span


 0

1− i
2


Hence, we can let w = 1√

6

 0
1− i

2

. So,

U =
1√
2

(
i i
i −i

)
, and V =


3i√
12

−i
2 0

−1+i√
12

−1+i
2

1√
6
− 1√

6
i

1√
12

1
2

2√
6

 .

2. (4 points) Suppose A ∈Mn is positive semidefinite. Suppose A is positive semidefinite. Then
there is unitary U such that A = Udiag (λ1, . . . , λn)U . Hence A∗A has eigenvalues λ21, . . . , λ

2
n,

and therefore has singular values λ1, . . . , λn).

To prove the converse, suppose λj = sj ≥ 0 for j = 1, . . . , n. From problem 6b of HW3, this
implies thatA is normal and thus, A is unitarily diagonalizable, that is, A = Udiag(λ1, . . . , λn)U∗

where U is unitary. From Theorem 2.2.5 b (in the detailed class notes), A must be positive
semidefinite.

3. (4 points) Let A ∈ Mm,n. Note that for any invertible P ∈ Mm and any invertible Q ∈ Mn,
we have

rank (PA) = rank (A) and rank (AQ) = rank (A)

Let A = USV ∗ be the singular value decomposition of A. That is U ∈ Mm is unitary
(therefore invertible) and V ∈Mn is unitary (V ∗ = V −1). Then

rank (A) = rank (USV ∗) = rank (SV ) = rank (S) =
k∑
j=1

sjEjj .
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But the rank of S is exactly the number of nonzero singular values of S. Note that

rank (AA∗) = rank (USS∗U) = rank (SS∗) = rank (S) = rank (A)

and
rank (A∗A) = rank (V ∗S∗SV ) = rank (S∗S) = rank (S) = rank (A).

4. (4 points) Let A,B ∈ Mm,n. Suppose A and B have the same singular values. Then there
exists unitary U1, U2 ∈Mm and unitary V1, V2 ∈Mn such that

A = U1SV
∗
1 and B = U2SV

∗
2 =⇒ A = (U1U

∗
2 )︸ ︷︷ ︸

U

U2SV
∗
2︸ ︷︷ ︸

B

(V2V
∗
1 )︸ ︷︷ ︸

V

Note that the product of unitary matrices is also unitary, so U = U1U
∗
2 ∈Mm and V2V

∗
1 ∈Mn

are unitary.

Conversely, if A = UBV for some unitary U ∈ Mm and unitary V ∈ Mn. Then AA∗ and
BB∗ are unitarily similar since AA∗ = UBB∗U∗. Thus, the eigenvalues of AA∗ are the same
as the eigenvalues of BB∗, as well as their square roots. Therefore, A and B have the same
singular values.

5. (8 points) Let A = At ∈Mn be a complex symmetric matrix. Suppose u ∈ Cn is a unit vector
such that |utAu| is maximum among all unit vectors.

(a) Consider the polar form of the complex number utAu = reiθ, where r ≥ 0. Then

|utAu| = r. Let v = e−i
θ
2u. Then vt = e−i

θ
2ut. Then

vtAv = (e−i
θ
2ut)A(e−i

θ
2u) = e−iθ(utAu) = e−iθ(reiθ) = r = |utAu|

(b) Suppose U =
[
v W

]
is unitary with v in part (a) and W ∈ Mn,n−1. WLOG, let us

assume vtAv > 0, otherwise, A = 0 and the conclusion follows. Let

B = [bij ] = U tAU =

(
vtAv vtAW
W tAv W tAW

)
=

(
vtAv yt

y A1

)
,

where y = W tAtv = W tAv with yt = vtAW , and A1 = W tAW = W tAtW = At. Let
j ∈ {2, . . . , n}, and b11 = a > 0, b1j = |bij |eir and bjje

−2ir = c1 + ic2, where c1, c2 ∈ R.
Define

xθ = (cos θ)e1 + e−ir(sin θ)ej

and

f(θ) = |xtθ(U tAU)xθ|2 = (a cos2 θ + 2|b1j | sin θ cos θ + c1 sin2 θ)2 + (c2 sin2 θ)2,

Then

f ′(θ) = 2(a cos2 θ + 2|b1j | sin θ cos θ + c1 sin2 θ)
(

(−a+ c1) sin 2θ + 2|b1j | cos 2θ
)

+(4c22 sin3 θ) cos θ,

Then f ′(0) = 4a|b1j |. If b1j 6= 0, f ′(0) > 0 and thus, for sufficiently small θ > 0,
f(θ) = |(xtθU t)A(Uxθ)| > f(0) = vtAv. Note that ||y|| = ||Uxθ|| = ||xθ|| = 1. This
contradicts the maximality of vtAv. Thus b1j = 0. This argument holds for j = 2, . . . , n.
Thus yt = 0 (and so y = 0). Thus B = [vtAv]⊕A1.
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(c) If n = 1, then A = [reiθ], where r ≥ 0. Then A = W t[r]W , where W = [ei
θ
2 ].

Suppose that for A1 ∈Mn−1 satisfying At1 = A1, there exists a unitary W ∈Mn−1 such
that A1 = V tdiag(r1, . . . , rn−1)V , where r1, . . . , rn ≥ 0.

Let A ∈ Mn such that At = A. From (c), we know that there is a unitary U such that
U tAU = [s] ⊕ A1, where At1 = A1. By the induction hypothesis, there is a unitary V
such that

U tAU = [s]⊕ V tdiag(r1, . . . , rn−1)V = ([1]⊕ V t)diag(s, r1, . . . , rn−1)([1]⊕ V ).

Then
A =

(
(U t)∗([1]⊕ V t)

)
diag(s, r1, . . . , rn−1)

(
([1]⊕ V )U∗)

We can let W =
(

([1] ⊕ V )U∗) so that W t = (U∗)t([1] ⊕ V t) = (U t)∗([1] ⊕ V t) and

(s1, . . . , sn) = (s, r1, . . . , rn−1). Note that

WW ∗ =
(

([1]⊕ V )U∗)(U
(

([1]⊕ V ∗)) = I =
(
U([1]⊕ V ∗))

(
([1]⊕ V )U∗),

so that W is unitary.

By the principle of mathematical induction, we get the desired conclusion.

(d) Let A = At = W tdiag(s1, . . . , sn)W as in (a)-(c). Then

AA∗ = W tdiag(s1, . . . , sn)WW ∗diag(s1, . . . , sn)(W t)∗ = W tdiag(s21, . . . , s
2
n)(W t)∗.

Note that W t(W t)∗ = W t(W ∗)t = (W ∗W )t = I. Thus, the eigenvalues of AA∗ are
s21, . . . , s

2
n. Then s1, . . . , sn ≥ 0 are the singular values of A.

6. (6 points) Let A ∈Mn be positive semidefinite with eigenvalues λ1 ≥ · · · ≥ λn ≥ 0.

(a-b) From theorem 2.2.5, there is a unitary U =
[
u1 · · · un

]
∈Mn such that

A = Udiag(λ1, . . . , λn)U∗ =
n∑
j=1

λjuju
∗
j .

Note that u1, un are a unit vectors such that u∗1Au1 = λ1 and u∗nAun = λn. Now, let x be
a unit vector in Cn. Note that y = U∗x = [yj ] is also a unit vector, i.e.

∑n
j=1 |yj |2 = 1.

Now,

x∗Ax = y∗Ay =
n∑
j=1

λj |yj |2

Since λ1 ≥ λj , then λ1|yj | ≥ λj |yj | for j = 2, . . . , n. Similarly, λj |yj | ≥ λn|yj | for
j = 2, . . . , n. Thus

λn = λn

n∑
j=1

|yj |2 =
n∑
j=1

λn|yj |2 ≤ x∗Ax ≤
n∑
j=1

λ1|yj |2 = λ1

n∑
j=1

|yj |2 = λ1

Therefore,
λ1 = u∗1Au1 = max{x∗Ax : x ∈ Cn, x∗x = 1}

and
λn = u∗nAun min{x∗Ax : x ∈ Cn, x∗x = 1}
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7. (6 points) Let A ∈Mm,n with nonzero singular values s1 ≥ · · · ≥ sk > 0. Note that

||Av|| =
√

(Av)∗(Av) =
√

(v∗A∗)(Av) =
√
v∗(A∗A)v

and
||A∗u|| =

√
(A∗u)∗(A∗u) =

√
(u∗A)(A∗u) =

√
u∗(AA∗)u

Note that for any function f that is positive on a set S, we have maxx∈S
√
f(x) =

√
maxx∈S f(x).

Thus From problem 6, we have

max{‖Av‖ : v ∈ Cn, ‖v‖ = 1} =
√

max{v∗(A∗A)v : v ∈ Cn, ‖v‖ = 1} = s1

and
max{‖A∗u‖ : v ∈ Cn, ‖v‖ = 1} =

√
max{u∗(AA∗)u : u ∈ Cn, ‖u‖ = 1} = s1

Similarly, for any function f that is positive on a set S, we have minx∈S
√
f(x) =

√
minx∈S f(x).

Thus From problem 6, we have

min{‖Av‖ : v ∈ Cn, ‖v‖ = 1} =
√

min{v∗(A∗A)v : v ∈ Cn, ‖v‖ = 1} =

{
sk if n = k < min{m,n}
0 if k < n

and

min{‖A∗u‖ : v ∈ Cn, ‖v‖ = 1} =
√

min{u∗(AA∗)u : u ∈ Cn, ‖u‖ = 1} =

{
sk if m = k < min{m,n}
0 if k < m

8. (Extra credit, 4 points) Suppose A = −At is skew-symmetric and u1, u2 ∈ Cn are orthonormal
pairs such that |ut1Au2| is maximum. Let U =

[
u1 u2 W

]
be a unitary unitary matrix where

W ∈Mn,n−2. Then

U tAU =

 ut1Au1 ut1Au2 ut1AW
ut2Au1 ut2Au2 ut2AW
W tAu1 W tAu2 W tAW

 =

a b yt

c d zt

w x A1


Since A = −At, then

U tAU = U t(−At)U =

−a −c −wt
−b −d −xt
−y −z −At1

 =⇒ U tAU =

 0 b yt

−b 0 zt

−y −z A1


Therefore a = d = 0, c = −b and A1 = −At1. It remains to be show that y = −w = 0 ∈ Cn−2
and z = −x = 0 ∈ Cn−2. Now, let B = U tAU = (bij) and b12 = b = |b|eiθ and j ∈ {3, . . . , n}.
If b1j = |b1j |eiθj , define

vθ = U(cos θe−iθe2 + sin θe−iθjej) = cos θe−iθu2 + sin θe−iθjuj ,

which is a unit vector in Cn. Define

f(θ) = |ut1Avθ|2 = (cos θ|b12|+ sin θ|b1j |)2

=⇒ f ′(θ) = 2(cos θ|b12|+ sin θ|b1j |)(− sin θ|b12|+ cos θ|b1j |) =⇒ f ′(0) = 2|b12||b1j |
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If b1j 6= 0, then f ′(0) > 0 and hence there is a sufficiently small θ such that |ut1Avθ| >
|ut1Av0| = |ut1Au2|. This contradicts the maximality of |ut1Au2|. Thus, b1j = 0 for j = 3, . . . , n.
That is yt = 0.

Similarly, let j ∈ {3, . . . , n}. If bj2 = |bj2|eiβj , define

wθ = U(cos θe−iθe1 + sin θe−iβej) = cos θe−iθu1 + sin θe−iβuj ,

which is a unit vector in Cn. Let

g(θ) = |wtθAu2|2 = (cos θ|b12|+ sin θ|bj2|)2

=⇒ g′(θ) = 2(cos θ|b12|+ sin θ|b1j |)(− sin θ|b12|+ cos θ|bj2|) =⇒ g′(0) = 2|b12||bj2|

If bj2 6= 0, then g′(0) > 0 and hence there is a sufficiently small θ such that |wtθAu2| >
|wt0Av0| = |ut1Au2|. This contradicts the maximality of |ut1Au2|. Thus, bj2 = 0 for j =
3, . . . , n. That is −z = 0. This completes the proof.
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