Math 408 Advanced Linear Algebra Homework 4 Sample Solution

. 1 1—4 ¢
1. (12 points) Let A = (2 0 O).

(a)

First compute

det(AA™ — 2I) = det <4;z 42 )—(4—2)2—4—22—82+12—(z—6)(z—2).

—Z

Thus s1 = v/6 and s9 = /2.

We want to find orthonormal vectors u;,us € C? and orthonormal vectors vy, vy € C3
such that A = \/&le’f + ﬂuzv; The vectors vy, vy are unit eigenvectors of A*A
corresponding to the eigenvectors 6 and 2 of AA* respectively. (Note eigenvectors
corresponding to different eigenvalues are always orthogonal.)
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From (b), we can write A =Y SW* where
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Since Y is unitary, we have YY* = I, = Y*Y and W*W = I,. Then

A=YSW*=YSY*Y)W* = (YSY*) (YW*)
\—\5—1\7—1

Then we can let P = YSY* and V = YW*. Theorem 2.2.5 guarantees P is positive
semidefinite and VV* = (YW*)(WY™*) = Y(W*W)Y* = YY™* = I,. More explicitly,
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(d) Similar to (c), we let U = YW* and Q = WSW*. That is,

U_i<(—3+\/§)i —(14+4)(14V3) 1+\/§>
T oV \—(B+V3)i —(1+9)(1—-V3) 1-V3
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So that

A=YSW* = Y(W*W)SW* = (YW*)(WSW*) = UQ.

Note that UU* = (YW*)(WY™) = Y(W*W)Y* =YY™* = 1. Q is positive semidefinite
since we can write it as Q@ = BB*, where B = W+/S and V/S is just the diagonal matrix
whose diagonal entries are square roots of the diagonal entries of S.

(e) We choose U =Y and V = [W w] where w is a unit vector orthogonal to the columns
of W. The vector w is also an eigenvector of A*A corresponding to 0.
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2. (4 points) Suppose A € M, is positive semidefinite. Suppose A is positive semidefinite. Then

there is unitary U such that A = Udiag (\1,...,\,)U. Hence A*A has eigenvalues \?, ..., \2,
and therefore has singular values A1,...,\,).

To prove the converse, suppose A\; = s; > 0 for j = 1,...,n. From problem 6b of HW3, this
implies that A is normal and thus, A is unitarily diagonalizable, that is, A = Udiag(\1, ..., A\,)U*
where U is unitary. From Theorem 2.2.5 b (in the detailed class notes), A must be positive
semidefinite.

3. (4 points) Let A € M,, . Note that for any invertible P € M, and any invertible Q € M,,

we have
rank (PA) =rank (A) and rank (AQ) = rank (A)

Let A = USV™ be the singular value decomposition of A. That is U € M,, is unitary
(therefore invertible) and V' € M, is unitary (V* = V~1). Then

k
rank (A) = rank (USV™) = rank (SV') = rank (5) = Z siEj;.
j=1



But the rank of S is exactly the number of nonzero singular values of S. Note that
rank (AA*) = rank (USS*U) = rank (S5*) = rank (S) = rank (A4)

and
rank (A*A) = rank (V*S*SV) = rank (5*S) = rank (S) = rank (A).

. (4 points) Let A, B € My, . Suppose A and B have the same singular values. Then there
exists unitary Uy, Us € M,, and unitary Vi, Vo € M, such that
A=U1SV" and B=USVy = A= (U1U5)USVy (VaVY)

Note that the product of unitary matrices is also unitary, so U = U U5 € M,, and VoV}* € M,
are unitary.

Conversely, if A = UBV for some unitary U € M, and unitary V € M,. Then AA* and
BB* are unitarily similar since AA* = UBB*U*. Thus, the eigenvalues of AA* are the same
as the eigenvalues of BB*, as well as their square roots. Therefore, A and B have the same
singular values.

. (8 points) Let A = A € M,, be a complex symmetric matrix. Suppose u € C" is a unit vector
such that |u’Au| is maximum among all unit vectors.

(a) Consider the polar form of the complex number u'!Au = re? where » > 0. Then
|utAu| = r. Let v = e~'3u. Then v = e~%u!. Then
vl Av = (e_igut)A(e_i%u) = e V(' Au) = e (re??) = r = |ut Aul

(b) Suppose U = [v W] is unitary with v in part (a) and W € M, ,—1. WLOG, let us
assume v Av > 0, otherwise, A = 0 and the conclusion follows. Let

¢ t t ¢
1 gt [ vAv VAW [(vPAv oy
B_[bm]_UAU_<WtAv WtAW>_< y A1)’

where y = WAy = W!Av with y* = v! AW, and A; = WIAW = WIA'W = A, Let
Jj€{2,...,n},and by =a >0, by; = \bij]e" and bjje*%T = ¢1 + ico, where c¢1,c2 € R.
Define

zg = (cosf)er + e " (sinh)e;

and
f(0) = |25 (U AU)xg|? = (acos? @ + 2|byj| sin 6 cos 0 + c; sin” §)* + (ca sin” 0)?,
Then

1(0) = 2(acos? 6 + 2|by | sin 6 cos 6 + ¢ sin? §) ((—a + c1) sin 26 + 2|by | cos 26’)

+ (4¢3 sin® ) cos 6,
Then f'(0) = 4alby;|. If bi; # 0, f/(0) > 0 and thus, for sufficiently small 6 > 0,
f(0) = |(zhUA(Uzg)| > f(0) = v'Av. Note that ||y|| = ||[Uzg|| = ||zg|| = 1. This
contradicts the maximality of v' Av. Thus by; = 0. This argument holds for j = 2,...,n.

Thus ' = 0 (and so y = 0). Thus B = [v'Av] & A;.



(c) If n =1, then A = [re], where r > 0. Then A = W![r]W, where W = [ei%].
Suppose that for A; € M, satisfying A‘i = Aj, there exists a unitary W € M,,_1 such
that Ay = Vidiag(ry,...,7—1)V, where r1,...,7, > 0.
Let A € M, such that At A. From (c), we know that there is a unitary U such that
U'AU = [s] @ Ay, where A} = A;. By the induction hypothesis, there is a unitary V
such that

U'AU = [s] @ Vidiag(ry, ..., 1)V = ([1] @ V')diag(s,r1,...,mn—1)([1] @ V).
Then
A= ((Ut)*(m ® Vt))diag(s, 1y Tt (([1] ® V)UY)

We can let W = ( ] @® V)U*) so that W' = (U)H([1] @ V!) = (U)*([1] @ V*) and
($1,..-,8n) = (8,71,...,mn—1). Note that

Ww?* = (([1] o V)U*)(U(([l] V) =1= (U([l] o v*))((m @ V)U),

so that W is unitary.
By the principle of mathematical induction, we get the desired conclusion.

(d) Let A= A = Wtdiag(s1,...,s,)W as in (a)-(c). Then
AA* = Widiag(sy, ..., sp)WW*diag(sy, . .., s,)(WH* = Widiag(s?,...,s2)(WH)*.

Note that WHWH* = WHW*)! = (W*W)! = I. Thus, the eigenvalues of AA* are

s2 ...,82. Then sq,...,8, > 0 are the singular values of A.

6. (6 points) Let A € M,, be positive semidefinite with eigenvalues A\; > --- > X\, > 0.

(a-b) From theorem 2.2.5, there is a unitary U = [ul i un] € M, such that

A =Udiag(\, ..., A Z)\ uju;

Note that u1, u, are a unit vectors such that ujAu; = A\; and w) Au,, = \,. Now, let x be
a unit vector in C,. Note that y = U*z = [y;] is also a unit vector, i.e. 37 ; ly;? = 1.
Now,

n
vt Ar =yt Ay = Ayl
j=1

Since A\ > Aj, then Ai|y;| > Ajly;| for j = 2,...,n. Similarly, \jly;| > \,|y;| for
7=2,...,n. Thus

n n n n
M= Y 1yl =D Ml <2t Az <Y Mly P =) [yl =M
j=1 i=1 j=1 i=1

Therefore,
A1 = ujAu; = max{z*Az : z € C",z*x = 1}

and
An = Uy Aup min{z* Az 1 2z € C", 2"z = 1}



7. (6 points) Let A € M,,,, with nonzero singular values s; > --- > s > 0. Note that

[ 40]] = v/(Av)*(Av) = /(0" A7) (Av) = /o* (A" Ao

and

|4l = V(A u)*(A*u) = /(v A)(A*) = V/u* (A4 )u

Note that for any function f that is positive on a set S, we have max,cg \/ flx) = \/ maxges f(z).
Thus From problem 6, we have

max{||Av| : v € C", ||v|| =1} = \/max{v*(A*A)v v eCn || =1} =51

and

max{||A*u| : v € C", |jv]| = 1} = /max{u*(AA*)u : u € C*, ||ul| = 1} = s,

Similarly, for any function f that is positive on a set S, we have mingcg \/ flx) = \/ mingeg f(z).
Thus From problem 6, we have

. n PR - sy ifn =k <min{m,n
min{||Av| : v € C, ||jv]| = 1} = y/min{v*(A*A)v : v € C", |Jv]| :1}:{ Ok ifk<n { J

and

. _—_ n 1y — Pr— - — _ [ st ifm=Fk<min{m,n}
min{||A%ul| : v € C", ||jv]| = 1} = /min{u*(AA*)u: u € C*, |jul =1} { 0 ifk<m
8. (Extra credit, 4 points) Suppose A = —A? is skew-symmetric and u1, us € C" are orthonormal
pairs such that |u} Aus| is maximum. Let U = [ul Ug W] be a unitary unitary matrix where
W € My, n—2. Then

ut Auy  ulAuy  ul AW a by
UAU = | ubAu;  wbAus wbAW | =[c d 2
WiAu, W'Auy W'AW w oz A
Since A = —A!, then
—a —c —w' 0 b
VAU =UY(-AYU =|-b —d -2t | =U'AU=|-b 0 =z
—y —z —Al -y —z A

Therefore a = d =0, ¢ = —b and A; = —A}. It remains to be show that y = —w =0 € C"2
and z = —z = 0 € C" 2. Now, let B = U'AU = (b;;) and b12 = b = |ble?’ and j € {3,...,n}.
If blj = ‘blj‘eiej, define

vg = Ul(cos e ey + sinfe™"ie;) = cos e Puy + sin e~ iu;,
which is a unit vector in C™. Define

£(0) = |ul Avg|* = (cos O|bia| + sin 0]by;])?

- f’(&) = 2(0089’[)12‘ + Sinﬁlblj])(—sinﬁ\bm + COS@‘blj‘) f ) = 2‘[)12”()13‘



If b1; # 0, then f’(0) > 0 and hence there is a sufficiently small  such that |u}Avg| >
|ul Avg| = |ul Aug|. This contradicts the maximality of |u} Aua|. Thus, b1; =0forj =3,...,n.
That is y* = 0.

Similarly, let j € {3,...,n}. If bja = |bja|e??, define
wy = Ul(cosBe~?e; + sin He*iﬁej) = cosfe”uy + sin He*wuj,
which is a unit vector in C". Let
9(0) = JwhAus|* = (cos O|biz| + sin 6]bjz])?

= ¢'() = 2(cos f|by2| + sin 6101;])(—sinO|bi2| 4 cosO|bja|) = g (0) = 2|b12]]b;2]

If bjo # 0, then ¢/(0) > 0 and hence there is a sufficiently small § such that |w)Aus| >
|w§Avg| = |ul Aug|. This contradicts the maximality of |u}{Aus|. Thus, bjs = 0 for j =
3,...,n. That is —z = 0. This completes the proof.



