
Math 408 Advanced Linear Algebra Homework 6 Sample Solution

1. (8 points) From the proof of Theorem 3.4.2, we take (c1, c2, c3) = (3, 2, 1) and (a1, a2) =
(2.8, 1.5) and define u1, u2, u3 as follows

u1 =
√

(c1−a1)(c1−a2)
(c1−c2)(c1−c3) =

√
0.15, u2 =

√
(c2−a1)(c2−a2)
(c2−c1)(c2−c3) =

√
0.4, u3 =

√
(c3−a1)(c3−a2)
(c3−c1)(c3−c2) =

√
0.45

Let u =
[√

0.15
√

0.4
√

0.45
]T

. We can apply the Gram-Schmidt process on {u, e2, e3} to
get {u,w1, w2} which will be an orthonormal basis for R3. Then the following matrix is real
orthogonal

Q =
[
w1 w2 u

]
=


√

0.75
√

0.1
√

0.15

0 −
√

0.6
√

0.4

−0.5
√

0.3
√

0.45

 .
Let

A = Qtdiag (3, 2, 1)Q =

 2.5
√

0.3
√

0.45√
0.3 1.8 −

√
1.5√

0.45 −
√

1.5 1.7


One easily checks that

[
2.5

√
0.3√

0.3 1.8

]
has eigenvalues 2.8 and 1.5.

2. (8 points) Let S(λ1, . . . , λn) be the set of all n × n Hermitian matrices with eigenvalues
(λ1, . . . , λn), which is a compact set. Note that for any B = (bij) ∈ S, (b11, . . . , bnn) ≺
(λ1, . . . , λn). Thus for any k = 1, . . . , n,

b11 + · · ·+ bkk ≤ k largest diagonal entries of B ≤ λ1 + · · ·+ λk.

Let A∗ = A = (aij) ∈Mn with eigenvalues λ1 ≥ · · · ≥ λn.
(⇐=) If A = A11 ⊕ A22 where A11 ∈ Mk has eigenvalues λ1, . . . , λk. Then a11 + · · · + akk =
tr(A11) = λ1 + · · ·+ λk.

(=⇒) Suppose a11 + · · · + akk = λ1 + · · · + λk. Then applying the claim below, we get that
A = A11 ⊕ A22 where A11 ∈ Mk. Note that the eigenvalues of A are the eigenvalues of A11

together with the eigenvalues of A22. Thus, it must be true that the eigenvalues of A11 are
λ1, . . . , λk.
Claim: Suppose A = (aij) ∈ S such that for any B = (bij) ∈ S, it holds that

∑k
s=1 bss ≤∑k

s=1 ass. Then aij = 0 = aji whenever i ≤ k < j. (Equivalently, A = A11 ⊕ A22 for some
A11 ∈Mk.)
Proof of Claim: Suppose otherwise. Then there exist (i, j) with i ≤ k < j such that

aij 6= 0. Let C =

[
aii aij
aji ajj

]
and γ1, γ2 be its eigenvalues. Note that C is Hermitian since it is

a principal submatrix of A. Let Û be the unitary matrix such that ÛCÛ∗ = diag(γ1, γ2). We
know from Rayleigh’s theorem that λ1 ≥ aii. Note, in fact that λ1 > aii because if it were
true that λ1 = aii, then λ2 = ajj by comparing the trace of C and ÛCÛ∗. But from Problem
5 and 6a of Homework 3, we know that the sum of the singular values of C are given by

λ21 + λ22 = a2ii + a2jj + 2|aij |2 > a2ii + a2jj .
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Therefore λ1 > aii. Now Let B = UAU∗ = (bij) where the entries of U = (uij) is the same
as that of the identity except for four positions–specifically,[

uii uij
uji ujj

]
= Û

Then the entries of A and B are the same except for the ith and jth rows and columns. Now,

k∑
s=1

bss = bii +
k∑

s=1,s 6=i
bss = γ1 +

k∑
s=1,s 6=i

ass >
k∑
j=1

ajj

which is a contradiction to the assumption of the claim. Therefore aij = 0 = aji for any
i ≤ k < j.

3. (8 points) Let A ∈Mn with singular values s1 ≥ · · · ≥ sn. By the Corollary 2.4.4. there is a
positive semidefinite matrix P with eigenvalues s1 ≥ · · · ≥ sn and a unitary V such that A =
PV . Since V is unitary, then it is normal and its eigenvalues are unit complex numbers. Thus
V = UDU∗, where U is unitary and is a diagonal matrix of the form D = diag(eiθ1 , . . . , eiθn).
Then

U∗AU = U∗(PUDU∗)U = U∗PUD

Now, suppose U∗AU = (aij) and B = U∗PU = (bij). Notice that B is unitarily similar to P .
Thus, B is also positive semidefinite. Furthermore, note that ajj = eiθjbjj for j = 1, . . . , n.
Thus,

|a11|+ · · ·+ |ann| = b11 + · · ·+ bnn = tr(B) = tr(P ) = s1 + · · · sn

4. (4 points) Suppose A ∈ Mn has singular values s1 ≥ · · · ≥ sn. Then AA∗ has eigenvalues
s21 ≥ s22 ≥ · · · ≥ s2n.

If A is a contraction, then s21 ≤ 1. By the Rayleigh principle, for any unit vector x ∈ Cn,

x∗AA∗x ≤ s21 =⇒ x∗(I −AA∗)x = 1− x∗AA∗x ≥ 1− s21 ≥ 0

Thus, I −AA∗ is positive semidefinite, i.e. I ≥ AA∗.
Conversely, If I ≥ AA∗ then for any unit vector x ∈ Cn, x∗(I−AA∗)x = 1−x∗(AA∗)x ≥ 0. In
particular, if x is a unit eigenvector of AA∗ corresponding to s21, then this implies 1− s21 ≥ 0.
Then s1 ≤ 1 and A is a contraction.

5. (8 points) For a positive semidefinite matrix X ∈Mn, let |X| =
√
X be the (unique) positive

semidefinite matrix such that |X|2. Let A ∈Mn be a contraction.

(a) Consider the singular value decomposition of A given by A = UDV . Then

I −A∗A = I − V ∗D2V = V ∗(I −D2)V and I −AA∗ = I − UD2U∗ = U(I −D2)U∗

Since A is a contraction, then I −D2 is a diagonal matrix with nonnegative diagonal entries.

A
√
I −A∗A = (UDV )(V ∗

√
I −D2V ) = U(D

√
I −D2)V

Here,
√
I −D2 is the diagonal matrix whose diagonal entry is just the square roots of the

corresponding diagonal entries of I −D2. Since D and
√
I −D2 are diagonal matrices, they

commute and thus,

A
√
I −A∗A = U(

√
I −D2)DV = (U(

√
I −D2)U∗)(UDV ) =

√
1−AA∗A
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(b) Suppose A ∈ Mn is a contraction. Then
√

1−AA∗ and
√
I −A∗A are well-defined psd

(therefore Hermitian) matrices. Let

U =

(
A

√
1−AA∗√

I −A∗A −A∗
)
∈M2n.

Then

UU∗ =

(
A

√
1−AA∗√

I −A∗A −A∗
)(

A∗
√
I −A∗A√

I −AA∗ −A

)
=

(
AA∗ + (

√
I −AA∗)2 A

√
I −A∗A−

√
I −AA∗A√

I −A∗AA∗ −A∗
√
I −AA∗ (

√
I −A∗A)2 +A∗A

)
=

(
I A

√
I −A∗A−

√
I −AA∗A

(A
√
I −A∗A−

√
I −AA∗A)∗ I

)
By Part (a), A

√
I −A∗A−

√
I −AA∗A = 0 and thus, U is unitary.

6. (8 points) Let A ∈Mn be a contraction with polar decomposition PV such that P is positive
semidefinite and V is unitary.

(a) The eigenvalues of P are the singular values of A. Since A is contraction, then I ≥ P 2 and
hence

√
I − P 2 is well-defined. Note also that P and

√
I − P 2 are psd, and hence Hermitian,

so that P = P ∗ and (
√
I − P 2)∗ =

√
I − P 2. Let Q = P + i

√
I − P 2 ∈Mn. Then

QQ∗ = (P + i
√
I − P 2)(P + i

√
I − P 2)∗

= (P + i
√
I − P 2)(P − i

√
I − P 2)

= P 2 + iP
√
I − P 2 − iP

√
I − P 2 + (

√
I − P 2)2

= I

Hence Q is unitary, and therefore Q∗ is also unitary. Define A1 = (P + i
√
I − P 2)V = QV

and A2 = (P − i
√
I − P 2)V = Q∗V . Clearly A1 and A2 are unitary since the product of

unitary matrices is unitary.
(b) Now

1

2
(A1 +A2) = 1

2

(
(P + i

√
I − P 2)V + (P − i

√
I − P 2)V

)
= 1

2

(
(P + i

√
I − P 2) + (P − i

√
I − P 2)

)
V = 1

2(2P )V = PV = A

Note that if n = 1, this shows that every complex number µ with |µ| ≤ 1 is the average of
two complex numbers of unit moduli.

7. (8 points) Let A = (aij) be a positive semidefinite matrix with eigenvalues s1 ≥ · · · ≥ sn ≥ 0.
Note that the eigenvalues of A2 are s21, . . . , s

2
n. Thus,

tr (A2) = s21 + · · ·+ s2n

while
(tr A)2 = (s1 + · · ·+ sn)2 = s21 + s22 + · · ·+ s2n +

∑
1≤i<j≤n

2sisj ≥ tr (A2)

Equality holds if
∑

1≤i<j≤n
2sisj = 0. Since A is nonzero, then s1 > 0. Thus s2, . . . , sn = 0, i.e.

A must be rank one.
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8. (Extra 8 points) Let (a1, . . . , an), (b1, . . . , bn) be real vectors. Show that there is A ∈Mn with
eigenvalues λ1, . . . , λn satisfying (a1, . . . , an) = (λ1 + λ̄1, . . . , λn + λ̄n) such that A + A∗ has
eigenvalues b1, . . . , bn if and only if (a1, . . . , an) ≺ (b1, . . . , bn).

Hint: Suppose U∗AU is in triangular form. Consider the diagonal entries and eigenvalues of
U∗(A+A∗)U .... Conversely, let H be a Hermitian matrix with diagonal entries a1, . . . , an and
eigenvalues b1, . . . , bn. Construct G = G∗ such that A = H + iG has the desired eigenvalues
and diagonal entries. (Think about a 2× 2 matrix.)

Proof:
Let (a1, . . . , an), (b1, . . . , bn) be real vectors.

(⇐=) Suppose (a1, . . . , an) ≺ (b1, . . . , bn). By Theorem 3.1.3, there is a Hermitian matrix
H = (hij) with diagonal entries (a1, . . . , an) and eigenvalues b1, . . . , bn. Take λj =

aj
2 = λj .

Let A and B be the unique pair of upper and lower triangular matrices with diagonal entries
(a12 , . . . ,

an
2 ) satisfying H = A+B. In fact, B = A∗ since H is Hermitian.

(⇐=) Conversely, suppose A ∈Mn satisfying the following three conditions

(a) A has eigenvalues λ1, . . . , λn,

(b) aj = λj + λj for j = 1, . . . , n and;

(c) A+A∗ has eigenvalues (b1, . . . , bn).

By Schur’s triangularization theorem, there exists a unitary U such that T = UAU∗ is upper
triangular with diagonal entries λ1, . . . , λn. Thus, T +T ∗ = U(A+A∗)U∗ has diagonal entries
a1, . . . , an and eigenvalues b1, . . . , bn. By Theorem 3.1.3, (a1, . . . , an) ≺ (b1, . . . , bn).
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