
Math 410 Quantum Computing C.K. Li Notes on Chapter 8

§ 8.1 RSA

Designers: Ron Rivest, Adi Shamir, and Leonard Adleman, 1977.

Basic assumption. Factorization of N = pq for two prime numbers p and q are hard to do.

Public key crypto-system. Alice(the bank, VISA card co.) can announce a public key for customers

(Bob) to encrypt their message and send it to Alice via a public channel, and Alice can easily decrypt

the message.

Step 1 Alice: Let N = pq, and let e < N be relatively prime to (p− 1)(q− 1). Here e is known as

the exponent, and release N and e. Then compute the modular inverse d of e and keeps d secret.

In group/number theory, we know that this is the group of units in ZN .

Step 2 Bob: To send Alice a message represented as a number m to Alice, encode the message m

by me and send it through an open/public channel.

Step 3 Alice: Decode the message by applying (me)d = m (mod N).

[Here one can show that mr = m (mod p) and mr = m (mod q) so that mr = m(mod N) .]

Example 1. Let (p, q) = (61, 53) and N = 3233.

2. The groups of units has (p− 1)(q − 1) = 780 elements.

3. For instance e = 17 is a unit, and r = 413 satisfies er ≡ 1 (mod N).

4. Public key (N, e) = (3233, 17).

5. Bob sends a number (message) m as c(m) = me (mod 3233) with c(m) < 3233.

6. Alice decrypts c(m) as m = c(m)r (mod 3233).

For instance if m = 65, then c = 6517 = 2790((mod 3233).

Then Alice computes 2790413 = 65((mod 3233).



§ 8.2 Factorization Algorithm

Step 1 Let N be given. Take a random m < N and compute gcd(m,N) = g by the Euclidean

Algorithm. If g > 1, we are extremely lucky. If not, go to Step 2.

Step 2 (Quantum part) Define fN : N → N by a = ma (mod N). Find the smallest P such that

mP = 1 (mod N). (That is, finding the order/period of m in U∗N .)

Step 3 If P is odd, it cannot be used. Go back to Step 1. Else, go to Step 4.

Step 4 If P is even, then (mP/2 − 1)(mP/2 + 1) = mP − 1 = 0 (mod N).

If mP/2 + 1 = 0 (mod N), then gcd(mP/2 − 1, N) = 1; go back to Step 1.

If mP/2 + 1 6= 0 (mod N), then mP/2 − 1 has a prime factor of N . [Note that mP/2 6= 1 (mod N)

as P is the order of m.] Proceed to Step 5.

Step 5 Compute d = gcd(mP/2 − 1, N), which will be p or q.

Example Let N = 799.

Step 1. Choose m = 7.

Step 2. We find (by quantum computer or conventional computer) that P = 368 is the smallest

positive number such that 7P = 1 ((mod 799)).

Step 3. Set P/2 = 184. Then (7184 − 1)(7184 + 1) = 0 (mod 799).

Step 4. Now, gcd(7184 + 1, 799) = 17 6= 1. So, we are good and done, namely, 799 = 17 · 47.

[In fact, gcd(7184 − 1, 799) = 47.]



§ 8.3 - 8.5 Shor’s Algorithm

Designer: Peter Shor (1994).

Complexity: The time taken is polynomial in logN , which is the size of the input).[1] Specifically

it takes quantum gates of order O((logN)2(loglogN)(logloglogN)) using fast multiplication.

• In 2001, Shor’s algorithm was demonstrated by a group at IBM, who factored 15 into 3× 5,

using an NMR implementation of a quantum computer with 7 qubits.

• After IBM’s implementation, two independent groups implemented Shor’s algorithm using

photonic qubits, emphasizing that multi-qubit entanglement was observed when running the

Shor’s algorithm circuits.

• In 2012, the factorization of 15 was performed with solid-state qubits. Also in 2012, the

factorization of 21 was achieved, setting the record for the largest number factored with

Shor’s algorithm.

• In April 2012, the factorization of 143(= 11×13) was achieved, although this used adiabatic

quantum computation rather than Shor’s algorithm.

• In November 2014, it was discovered that this 2012 adiabatic quantum computation had also

factored larger numbers, the largest being 56153 = 233× 241.



Let N = pq, and choose n so that N2 ≤ 2n < 2N2 so that Sn = {0, . . . , Q − 1} with Q = 2n.

Define f : Sn → Z/NZ by f(a) = ma (mod N). Apply the following.

Step 2.0 Set up |ψ0〉 = |0〉|0〉 in Sn ⊗ Sn.

Step 2.1 Apply QFT to the first register to get |ψ1〉 = T |0〉 ⊗ |0〉.

Step 2.2 Apply f using the unitary Uf so that Uf |ψ1〉 = |ψ1〉 = 1√
Q

∑Q−1
x=0 |x〉|f(x)〉.

Step 2.3 Apply QFT to the first register to get Υ(y) =
∑Q−1

x=0 w
−xy
n |f(x)〉 and

|ψ3〉 =
1

Q
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Step 2.4 Measure the first register. The probability of y ∈ Sn will be

Prob(y) = Q−2‖Υ(y)‖2/Q2 = Q−2|
∑
b

wbPy|2,

and the state collapses to |y〉(‖Υ(y)‖/Q), where w = e2πi/Q.

Step 2.5 Find the order P from the measurement outcome.

Here, because f is periodic, f(x) = f(x+ P ) we see that ‖Υ(y)‖2/Q2 is larger

if (wPy) is near the to ±1, i.e., yP/Q is close to an integer c.

By the theory of of continued fractions of rational number, we need to find d/s such that

|d/s− y/Q| ≤ 1/(2Q), gcd(d, s) = 1, s < N.

If f(x) = f(x+ s) then s = P .

If not, try ms or other fraction d′/s′ to approximate y/Q.

Else, repeat the algorithm.

Exercise 8.2 (Optional Homework)

Let N = 21 and m = 11. Then n = 9 so that N2 < 29 < (N + 1)2. The period is 6.



§8.4 Probability Distribution (Details)

Proposition 8.1 Let Q = 2n = Pq + r with 0 ≤ r < P , and let Q0 = Pq.

(a) If Py is not a multiple of Q, then

‖Υ(y)‖2 =
r sin2

(
πPy
Q

(
Q0

P + 1
))

+ (P − r) sin2
(
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Q · Q0
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)
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(b) If Py is a multiple of Q, then

‖Υ(y)‖2 =
r(Q0 + P )2 + (P − r)Q2

0

P 2
.

Remark Only those y ∈ {0, . . . , Q− 1} satisfying y = Pr has high Prob(y).

Limitation One may do a number of measurements to determine P by finding the minimum

distance between those |y〉 with high probability. But this is impractical if N is large.



§8.5 Continued Fractions and Order Finding (Details)

1. Every rational number x = y/Q can be expressed as continued fractions.

2. The jth convergent is useful in approximating the rational number x = y/Q.

3. To find the order P in our problem, use the jth convergent to construct the sequence

(p0, q0), . . . , (pM , qM ).

Determine the smallest k such that |pk/qk − y/Q| ≤ 1/(2Q). Then P = qk.

[Here we use the fact that y/Q = r/P for some integer r and the choice of N2 ≤ Q ≤ 2N2.]

§8.6 Modular Exponential Function

To that the Shor’s algorithm is polynomial time, one needs to implement the computation of

f(x) = mx efficiently using quantum gates. This can be done.


