Math 410 Quantum Computing C.K. Li

§ 8.1 RSA

Designers: Ron Rivest, Adi Shamir, and Leonard Adleman, 1977.

Basic assumption. Factorization of N = pq for two prime numbers p and q are hard to do.

Public key crypto-system. Alice(the bank, VISA card co.) can announce a public key for customers (Bob) to encrypt their message and send it to Alice via a public channel, and Alice can easily decrypt the message.

Step 1 Alice: Let N = pq, and let e < N be relatively prime to (p-1)(q-1). Here e is known as the exponent, and release N and e. Then compute the modular inverse d of e and keeps d secret.

In group/number theory, we know that this is the group of units in \mathbb{Z}_N .

Step 2 Bob: To send Alice a message represented as a number m to Alice, encode the message m by m^e and send it through an open/public channel.

Step 3 Alice: Decode the message by applying $(m^e)^d = m \pmod{N}$.

[Here one can show that $m^r = m \pmod{p}$ and $m^r = m \pmod{q}$ so that $m^r = m \pmod{N}$.]

Example 1. Let (p,q) = (61, 53) and N = 3233.

2. The groups of units has (p-1)(q-1) = 780 elements.

- 3. For instance e = 17 is a unit, and r = 413 satisfies $er \equiv 1 \pmod{N}$.
- 4. Public key (N, e) = (3233, 17).
- 5. Bob sends a number (message) m as $c(m) = m^e \pmod{3233}$ with c(m) < 3233.
- 6. Alice decrypts c(m) as $m = c(m)^r \pmod{3233}$.

For instance if m = 65, then $c = 65^{17} = 2790 \pmod{3233}$. Then Alice computes $2790^{413} = 65 \pmod{3233}$.

§ 8.2 Factorization Algorithm

Step 1 Let N be given. Take a random m < N and compute gcd(m, N) = g by the Euclidean Algorithm. If g > 1, we are extremely lucky. If not, go to Step 2.

Step 2 (Quantum part) Define $f_N : \mathbb{N} \to \mathbb{N}$ by $a = m^a \pmod{N}$. Find the smallest P such that $m^P = 1 \pmod{N}$. (That is, finding the order/period of m in U_N^* .)

Step 3 If P is odd, it cannot be used. Go back to Step 1. Else, go to Step 4.

Step 4 If P is even, then $(m^{P/2} - 1)(m^{P/2} + 1) = m^P - 1 = 0 \pmod{N}$.

If $m^{P/2} + 1 = 0 \pmod{N}$, then $gcd(m^{P/2} - 1, N) = 1$; go back to Step 1.

If $m^{P/2} + 1 \neq 0 \pmod{N}$, then $m^{P/2} - 1$ has a prime factor of N. [Note that $m^{P/2} \neq 1 \pmod{N}$ as P is the order of m.] Proceed to Step 5.

Step 5 Compute $d = \text{gcd}(m^{P/2} - 1, N)$, which will be p or q.

Example Let N = 799.

- Step 1. Choose m = 7.
- Step 2. We find (by quantum computer or conventional computer) that P = 368 is the smallest positive number such that $7^P = 1 \pmod{799}$.
- Step 3. Set P/2 = 184. Then $(7^{184} 1)(7^{184} + 1) = 0 \pmod{799}$.
- Step 4. Now, $gcd(7^{184} + 1,799) = 17 \neq 1$. So, we are good and done, namely, $799 = 17 \cdot 47$. [In fact, $gcd(7^{184} - 1,799) = 47$.]

§ 8.3 - 8.5 Shor's Algorithm

Designer: Peter Shor (1994).

Complexity: The time taken is polynomial in $\log N$, which is the size of the input).[1] Specifically it takes quantum gates of order O((log N)2(log log N)) using fast multiplication.

- In 2001, Shor's algorithm was demonstrated by a group at IBM, who factored 15 into 3×5 , using an NMR implementation of a quantum computer with 7 qubits.
- After IBM's implementation, two independent groups implemented Shor's algorithm using photonic qubits, emphasizing that multi-qubit entanglement was observed when running the Shor's algorithm circuits.
- In 2012, the factorization of 15 was performed with solid-state qubits. Also in 2012, the factorization of 21 was achieved, setting the record for the largest number factored with Shor's algorithm.
- In April 2012, the factorization of $143(=11 \times 13)$ was achieved, although this used **adiabatic** quantum computation rather than Shor's algorithm.
- In November 2014, it was discovered that this 2012 adiabatic quantum computation had also factored larger numbers, the largest being $56153 = 233 \times 241$.

Let N = pq, and choose n so that $N^2 \leq 2^n < 2N^2$ so that $S_n = \{0, \ldots, Q-1\}$ with $Q = 2^n$. Define $f: S_n \to \mathbb{Z}/N\mathbb{Z}$ by $f(a) = m^a \pmod{N}$. Apply the following.

Step 2.0 Set up $|\psi_0\rangle = |0\rangle|0\rangle$ in $S_n \otimes S_n$.

Step 2.1 Apply QFT to the first register to get $|\psi_1\rangle = T|0\rangle \otimes |0\rangle$.

Step 2.2 Apply f using the unitary U_f so that $U_f |\psi_1\rangle = |\psi_1\rangle = \frac{1}{\sqrt{Q}} \sum_{x=0}^{Q-1} |x\rangle |f(x)\rangle$.

Step 2.3 Apply QFT to the first register to get $\Upsilon(y) = \sum_{x=0}^{Q-1} w_n^{-xy} |f(x)\rangle$ and

$$|\psi_3\rangle = \frac{1}{Q} \sum_{x=0}^{Q-1} T|x\rangle |f(x)\rangle = \frac{1}{Q} \sum_{y=0}^{Q-1} \|\Upsilon(y)\| \left|y\rangle \frac{|\Upsilon(y)\rangle}{\|\Upsilon(y)\|}$$

Step 2.4 Measure the first register. The probability of $y \in S_n$ will be

$$\operatorname{Prob}(y) = Q^{-2} \|\Upsilon(y)\|^2 / Q^2 = Q^{-2} |\sum_b w^{bPy}|^2,$$

and the state collapses to $|y\rangle(||\Upsilon(y)||/Q)$, where $w = e^{2\pi i/Q}$.

Step 2.5 Find the order *P* from the measurement outcome.

Here, because f is periodic, f(x) = f(x+P) we see that $\|\Upsilon(y)\|^2/Q^2$ is larger if (w^{Py}) is near the to ± 1 , i.e., yP/Q is close to an integer c.

By the theory of of continued fractions of rational number, we need to find d/s such that

$$|d/s - y/Q| \le 1/(2Q), \quad \gcd(d, s) = 1, \ s < N.$$

If f(x) = f(x+s) then s = P.

If not, try ms or other fraction d'/s' to approximate y/Q.

Else, repeat the algorithm.

Exercise 8.2 (Optional Homework)

Let N = 21 and m = 11. Then n = 9 so that $N^2 < 2^9 < (N+1)^2$. The period is 6.

§8.4 Probability Distribution (Details)

Proposition 8.1 Let $Q = 2^n = Pq + r$ with $0 \le r < P$, and let $Q_0 = Pq$.

(a) If Py is not a multiple of Q, then

$$\|\Upsilon(y)\|^2 = \frac{r\sin^2\left(\frac{\pi Py}{Q}\left(\frac{Q_0}{P}+1\right)\right) + (P-r)\sin^2\left(\frac{\pi Py}{Q}\cdot\frac{Q_0}{P}\right)}{\sin^2\left(\frac{\pi Py}{Q}\right)}.$$

(b) If Py is a multiple of Q, then

$$\|\Upsilon(y)\|^2 = \frac{r(Q_0 + P)^2 + (P - r)Q_0^2}{P^2}.$$

Remark Only those $y \in \{0, ..., Q - 1\}$ satisfying y = Pr has high Prob(y).

Limitation One may do a number of measurements to determine P by finding the minimum distance between those $|y\rangle$ with high probability. But this is impractical if N is large.

§8.5 Continued Fractions and Order Finding (Details)

- 1. Every rational number x = y/Q can be expressed as continued fractions.
- 2. The *j*th convergent is useful in approximating the rational number x = y/Q.
- 3. To find the order P in our problem, use the *j*th convergent to construct the sequence

$$(p_0,q_0),\ldots,(p_M,q_M)$$

Determine the smallest k such that $|p_k/q_k - y/Q| \le 1/(2Q)$. Then $P = q_k$.

[Here we use the fact that y/Q = r/P for some integer r and the choice of $N^2 \le Q \le 2N^2$.]

§8.6 Modular Exponential Function

To that the Shor's algorithm is polynomial time, one needs to implement the computation of $f(x) = m^x$ efficiently using quantum gates. This can be done.