Algebra II Exam 2 Sample Solution based on that of Liam Bench

Pg. 397
42. Since a is a primitive element it is a generator of $\operatorname{GF}\left(5^{n}\right)^{*}$. The order of 2 is 4 . So we want the smallest number k that makes $\left(a^{k}\right)^{4}=1$. Well the order of a generator is $5^{n}-1$ so $a^{\left(5^{n}-1\right) / 4}=2$ or 3 . If $a^{\left(5^{n}-1\right) / 4}=2$ then k is $\left(5^{n}-1\right) / 4$. If it is 3 then $k=3\left(5^{n}-1\right) / 4$. So, the smallest integer k is $\left(5^{n}-1\right) / 4$.

Note: The number $\left(5^{n}-1\right) / 4=\left(5^{n}-1\right) /(5-1)=5^{n-1}+5^{n-2}+\cdots+1$ is an integer.

Pg. 405

12. First note that R is commutative because it is contained in a field and has unity because it contains a field. We need only show that every nonzero element $a \in R$ has an inverse in R. Let a be a nonzero element of R. So $a \in E$ and is therefore algebraic over F. So there is a unique monic irreducible $p(x) \in F[x]$ such that $p(a)=0$. Let $\operatorname{deg} p(x)=n$. Well $a^{-1} \in F(a)$ and every element of $F(a)$ can be written as $c_{n-1} a^{n-1}+\ldots+c_{1} a+c_{0}$ by Theorem 20.3. So $a^{-1}=d_{n-1} a^{n-1}+\ldots+d_{1} a+d_{0} \in R$.

Alternatively, $0=p(a)=b_{0}+\cdots+a^{n}$ implies that $1=a d=d a$ with $d=-b_{0}^{-1}\left(b_{1}+b_{2} a+\cdots a^{n-1}\right)$. So, $d=a^{-1}$.

Chapter 24

50. Clearly, $N(H) \subseteq N(N(H))$. To prove the converse, H is the only Sylow subroup in $N(H)$. If $y \in N(N(H))$, then $y H y^{-1} \subseteq y N(H) y^{-1}=N(H)$ is a Sylow subgroup in $N(H)$ so that $y H y^{-1}=H$. Hence, $y \in N(H)$.
51. Let H be a Sylow p-subgroup and K be a Sylow q-subgroup. So $|H|=p^{2}$ and $|K|=q^{2}$. Let n_{p} be the number of Sylow p-subgroups. So $n_{p}=1+k p$ and $n_{p} \mid q^{2}$. So $n_{p}=1, q$, or q^{2}. If $n_{p}=q$ then $1+k p=q$. So $q^{2}-1=(1+k p)^{2}-1=k^{2} p^{2}+2 k p$ and $p \mid q^{2}-1$. This is a contradiction. If $n_{p}=q^{2}$ then $1+k p=q^{2}$ and $p \mid q^{2}-1$. This is also a contradiction so n_{p} must equal 1 . So H is the only Sylow p-subgroup and therefore normal in G. By a symmetric argument K is also normal in G. $|H K|=\left|p^{2} q^{2}\right|$ so $G=H K \approx H \oplus K$. Since $|H|=p^{2}$ and $|K|=q^{2}, H$ and K are both Abelian. So G is isomorphic to an external direct product of Abelian groups and therefore Abelian itself.

Three pairs of primes that satisfy this are $(5,7),(7,11),(11,13)$.
60. Let $|G|=45=3^{2} \cdot 5$. Let n_{3} be the number of Sylow 3 -subgroups. So $n_{3}=1+3 k$ and $n_{3} \mid 5$. So $n_{3}=1$. So this group is unique. Call it H. We have $n_{5}=1+5 k$ and $n_{5} \mid 9$. So $n_{5}=1$. This group is also unique. Call it K. So H and K are unique and therefore normal in G. Since the orders of H and K are relatively prime we have $|H K|=45=|G|$. So $G=H K \approx H \oplus K . K$ is of prime order so it is isomorphic to \mathbb{Z}_{5}. Also H is of a square prime order so it is isomorphic to \mathbb{Z}_{9} or $\mathbb{Z}_{3} \oplus \mathbb{Z}_{3}$. So G is isomorphic to $\mathbb{Z}_{9} \oplus \mathbb{Z}_{5}$ or $\mathbb{Z}_{3} \oplus \mathbb{Z}_{3} \oplus \mathbb{Z}_{5}$.

