Algebra II Exam 2 Sample Solution based on that of Liam Bench

Pg. 397

42. Since a is a primitive element it is a generator of $GF(5^n)^*$. The order of 2 is 4. So we want the smallest number k that makes $(a^k)^4 = 1$. Well the order of a generator is $5^n - 1$ so $a^{(5^n-1)/4} = 2$ or 3. If $a^{(5^n-1)/4} = 2$ then k is $(5^n - 1)/4$. If it is 3 then $k = 3(5^n - 1)/4$. So, the smallest integer k is $(5^n - 1)/4$.

Note: The number $(5^n - 1)/4 = (5^n - 1)/(5 - 1) = 5^{n-1} + 5^{n-2} + \dots + 1$ is an integer.

Pg. 405

12. First note that R is commutative because it is contained in a field and has unity because it contains a field. We need only show that every nonzero element $a \in R$ has an inverse in R. Let a be a nonzero element of R. So $a \in E$ and is therefore algebraic over F. So there is a unique monic irreducible $p(x) \in F[x]$ such that p(a) = 0. Let deg p(x) = n. Well $a^{-1} \in F(a)$ and every element of F(a) can be written as $c_{n-1}a^{n-1} + \ldots + c_1a + c_0$ by Theorem 20.3. So $a^{-1} = d_{n-1}a^{n-1} + \ldots + d_1a + d_0 \in R$.

Alternatively, $0 = p(a) = b_0 + \dots + a^n$ implies that 1 = ad = da with $d = -b_0^{-1}(b_1 + b_2 a + \dots + a^{n-1})$. So, $d = a^{-1}$.

Chapter 24

50. Clearly, $N(H) \subseteq N(N(H))$. To prove the converse, H is the only Sylow subroup in N(H). If $y \in N(N(H))$, then $yHy^{-1} \subseteq yN(H)y^{-1} = N(H)$ is a Sylow subgroup in N(H) so that $yHy^{-1} = H$. Hence, $y \in N(H)$.

52. Let *H* be a Sylow p-subgroup and *K* be a Sylow q-subgroup. So $|H| = p^2$ and $|K| = q^2$. Let n_p be the number of Sylow p-subgroups. So $n_p = 1 + kp$ and $n_p|q^2$. So $n_p = 1, q, \operatorname{or} q^2$. If $n_p = q$ then 1 + kp = q. So $q^2 - 1 = (1 + kp)^2 - 1 = k^2p^2 + 2kp$ and $p|q^2 - 1$. This is a contradiction. If $n_p = q^2$ then $1 + kp = q^2$ and $p|q^2 - 1$. This is also a contradiction so n_p must equal 1. So *H* is the only Sylow p-subgroup and therefore normal in *G*. By a symmetric argument *K* is also normal in *G*. $|HK| = |p^2q^2|$ so $G = HK \approx H \oplus K$. Since $|H| = p^2$ and $|K| = q^2$, *H* and *K* are both Abelian. So *G* is isomorphic to an external direct product of Abelian groups and therefore Abelian itself.

Three pairs of primes that satisfy this are (5,7), (7,11), (11,13).

60. Let $|G| = 45 = 3^2 \cdot 5$. Let n_3 be the number of Sylow 3-subgroups. So $n_3 = 1 + 3k$ and $n_3|5$. So $n_3 = 1$. So this group is unique. Call it H. We have $n_5 = 1 + 5k$ and $n_5|9$. So $n_5 = 1$. This group is also unique. Call it K. So H and K are unique and therefore normal in G. Since the orders of H and K are relatively prime we have |HK| = 45 = |G|. So $G = HK \approx H \oplus K$. K is of prime order so it is isomorphic to \mathbb{Z}_5 . Also H is of a square prime order so it is isomorphic to $\mathbb{Z}_9 \oplus \mathbb{Z}_5$ or $\mathbb{Z}_3 \oplus \mathbb{Z}_3 \oplus \mathbb{Z}_5$.