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Preliminary: Chapter 1 - 15; at least the definitions of Group, Ring, Field.

Motivation Early study of algebra concerns solving (polynomial) equations:

f(x) = a0 + a1x + · · ·+ anxn = 0, where a0, . . . , an ∈ R.

We consider the problems for R = Z,Q,R,C, M2 and a finite field, say, Zp.

Some natural questions.

1) Can we find a zero of f(x) in R? That is, find a ∈ R such that f(a) = 0.

2) If not, can we find a zero in a larger ring R̃?

3) What are the structure of the set R[x] of all the polynomials in x over R?

4) Find the common and distinct features of R[x] for different R.

5) What are the relations between the zeros of f(x)?
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Notation and basic results

Remark One can define a polynomial function f : R→ R by

f(x) = a0 + a1x + · · ·+ anxn.

Different polynomials may give rise to the same function.

Notation Let R be a commutative ring. The ring of polynomials over R in the
indeterminate x is the set

R[x] = {a0 + · · ·+ anxn : n ∈ N, a0, . . . , an ∈ R}.

We can consider equality, addition, multiplication and degree of a polynomial
f(x) ∈ R[x].

Theorem 16.1 If D is an integral domain, then D[x] is an integral domain.

Proof. Check the ring axioms, unity, commutativity, no zero divisors.

Note If F is a field, then F [x] behaves like Z in many regards.
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Division Algorithm and Remainder Theorem

Theorem 16.2 [Division Algorithm.] If F is a field, and f(x), g(x) ∈ F [x] with
g(x) 6= 0, then there exist unique polynomials q(x), r(x) such that

f(x) = g(x)q(x) + r(x) with deg(r(x)) ≤ deg(g(x)).

Proof. See the proof in p. 301. In practice, we do the following.

Corollary [Remainder Theorem] Let F be a field, f(x) ∈ F [x], a ∈ F . Then

f(x) = (x− a)q(x) + f(a),

i.e., f(a) is the remainder.

Consequently, (x− a) is a factor of f(x) if and only if f(a) = 0.

If deg(f(x)) = n, then f(x) has at most n zeros, counting multiplicities.
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Principal Ideal Domain

Definition A principal ideal domain is an integral domain R in which every
ideal has the form

〈a〉 = {ra : r ∈ R} for some a ∈ R.

Theorem 16.3-4 Let F be a field. Then F [x] is a principal ideal domain.

In fact, for any non-zero ideal A of F [x], A = 〈g(x)〉, where g(x) is a nonzero
polynomial in A with minimum degree.

Proof. The result is clear if A = {0}. Let g(x) ∈ A have minimum degree.
It exists because of the well-ordering principle of positive integers. Then
every f(x) is a multiple of g(x). Else, ...
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Quotient field

Example 1 Suppose f(x) = x2 − 2 ∈ Q[x] and A = 〈x2 − 2〉. Then

F = Q[x]/A = {ax + b + A : a, b ∈ Q}

is a field, where 0 + A and 1 + A are the zero and unity of the field, and the
multiplicative inverse of ax + b + A ∈ F is (ax− b)/(2a2 − b2) + A because

(ax + b + A)((ax− b)/(2a2 − b2) + A)
= (a2x2 − b2)/(2a2 − b2) + A

= (2a2 − b2)/(2a2 − b2) + A = 1 + A.

Here note that 2a2 − b2 6= 0 because a, b ∈ Q.

By the factor theorem, f(x) has no zeros in Q.

But x + A ∈ F is a zero of the equation y2 − 2 ∈ F[y], because

(x + A)2 − (2 + A) = (x2 − 2) + A = 0 + A.
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Example 2 Suppose f(x) = x2 + 1 ∈ R[x] and A = 〈x2 + 1〉. Then

F = R[x]/A = {ax + b + A : a, b ∈ R}

is a field.

For every nonzero ax + b + A ∈ F, the multiplicative inverse is
(−ax + b)/(a2 + b2) + A because

(ax + b + A)((−ax + b)/(a2 + b2) + A) = (−a2x2 + b2)/(a2 + b2) + A

= (a2 + b2)/(a2 + b2) + A = 1 + A.

Note that f(x) has no zeros in R. But x + A ∈ F is a zero of y2 + 1 ∈ F[y].
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Example 3 Suppose f(x) = x2 + x + 1 ∈ Z2[x] and A = 〈x2 + x + 1〉. Then

F = Z2[x]/A = {ax + b + A : a, b ∈ Z2}

is a field with 4 elements.

For every nonzero ax + b + A ∈ F, one can find the inverse. Here are the
inverse pairs:

(1 + A, 1 + A), (x + A, 1 + x + A).

Note that f(x) has no zeros in Z2. But x + A ∈ F is a zero of y2 + y + 1 ∈ F.
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