Chapter 16 Polynomial rings

Chapter 16 Polynomial rings

イロト イヨト イヨト イヨト

臣

Preliminary: Chapter 1 - 15; at least the definitions of Group, Ring, Field. Motivation Early study of algebra concerns solving (polynomial) equations:

$$f(x) = a_0 + a_1 x + \dots + a_n x^n = 0$$
, where $a_0, \dots, a_n \in R$.

We consider the problems for $R = \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}, M_2$ and a finite field, say, \mathbb{Z}_p . Some natural questions.

- 1) Can we find a zero of f(x) in R? That is, find $a \in R$ such that f(a) = 0.
- 2) If not, can we find a zero in a larger ring \tilde{R} ?
- 3) What are the structure of the set R[x] of all the polynomials in x over R?
- 4) Find the common and distinct features of R[x] for different R.
- 5) What are the relations between the zeros of f(x)?

イロト イヨト イヨト イヨト 二日

Remark One can define a polynomial function $f: R \to R$ by

$$f(x) = a_0 + a_1 x + \dots + a_n x^n.$$

Different polynomials may give rise to the same function.

Notation Let ${\cal R}$ be a commutative ring. The ring of polynomials over ${\cal R}$ in the indeterminate x is the set

$$R[x] = \{a_0 + \dots + a_n x^n : n \in \mathbb{N}, \ a_0, \dots, a_n \in R\}.$$

We can consider equality, addition, multiplication and degree of a polynomial $f(x) \in R[x]$.

Theorem 16.1 If D is an integral domain, then D[x] is an integral domain.

Proof. Check the ring axioms, unity, commutativity, no zero divisors.

Note If *F* is a field, then F[x] behaves like \mathbb{Z} in many regards.

イロト 人間 トイヨト イヨト

Theorem 16.2 [Division Algorithm.] If F is a field, and $f(x), g(x) \in F[x]$ with $g(x) \neq 0$, then there exist unique polynomials q(x), r(x) such that

$$f(x) = g(x)q(x) + r(x) \quad \text{ with } \deg(r(x)) \leq \deg(g(x)).$$

Proof. See the proof in p. 301. In practice, we do the following.

Corollary [Remainder Theorem] Let F be a field, $f(x) \in F[x], a \in F$. Then

$$f(x) = (x - a)q(x) + f(a),$$

i.e., f(a) is the remainder.

Consequently, (x - a) is a factor of f(x) if and only if f(a) = 0.

If $\deg(f(x)) = n$, then f(x) has at most n zeros, counting multiplicities.

イロト イヨト イヨト イヨト 二日

 $\ensuremath{\textbf{Definition}}\xspace$ A principal ideal domain is an integral domain R in which every ideal has the form

$$\langle a \rangle = \{ ra : r \in R \}$$
 for some $a \in R$.

Theorem 16.3-4 Let F be a field. Then F[x] is a principal ideal domain.

In fact, for any non-zero ideal A of F[x], $A = \langle g(x) \rangle$, where g(x) is a nonzero polynomial in A with minimum degree.

Proof. The result is clear if $A = \{0\}$. Let $g(x) \in A$ have minimum degree. It exists because of the well-ordering principle of positive integers. Then every f(x) is a multiple of g(x). Else, ...

イロト イヨト イヨト イヨト

Quotient field

Example 1 Suppose $f(x) = x^2 - 2 \in \mathbb{Q}[x]$ and $A = \langle x^2 - 2 \rangle$. Then

$$\mathbb{F} = \mathbb{Q}[x]/A = \{ax + b + A : a, b \in \mathbb{Q}\}\$$

is a field, where 0 + A and 1 + A are the zero and unity of the field, and the multiplicative inverse of $ax + b + A \in \mathbb{F}$ is $(ax - b)/(2a^2 - b^2) + A$ because

$$(ax + b + A)((ax - b)/(2a^{2} - b^{2}) + A)$$

= $(a^{2}x^{2} - b^{2})/(2a^{2} - b^{2}) + A$
= $(2a^{2} - b^{2})/(2a^{2} - b^{2}) + A = 1 + A.$

Here note that $2a^2 - b^2 \neq 0$ because $a, b \in \mathbb{Q}$.

By the factor theorem, f(x) has no zeros in \mathbb{Q} .

But $x + A \in \mathbb{F}$ is a zero of the equation $y^2 - 2 \in \mathbb{F}[y]$, because

$$(x + A)^{2} - (2 + A) = (x^{2} - 2) + A = 0 + A.$$

(4月) トイヨト イヨト

Example 2 Suppose $f(x) = x^2 + 1 \in \mathbb{R}[x]$ and $A = \langle x^2 + 1 \rangle$. Then $\mathbb{F} = \mathbb{R}[x]/A = \{ax + b + A : a, b \in \mathbb{R}\}$

is a field.

For every nonzero $ax + b + A \in \mathbb{F}$, the multiplicative inverse is $(-ax + b)/(a^2 + b^2) + A$ because

$$(ax + b + A)((-ax + b)/(a^{2} + b^{2}) + A) = (-a^{2}x^{2} + b^{2})/(a^{2} + b^{2}) + A$$
$$= (a^{2} + b^{2})/(a^{2} + b^{2}) + A = 1 + A.$$

Note that f(x) has no zeros in \mathbb{R} . But $x + A \in \mathbb{F}$ is a zero of $y^2 + 1 \in \mathbb{F}[y]$.

イロト イボト イヨト イヨト

Example 3 Suppose $f(x) = x^2 + x + 1 \in \mathbb{Z}_2[x]$ and $A = \langle x^2 + x + 1 \rangle$. Then $\mathbb{F} = \mathbb{Z}_2[x]/A = \{ax + b + A : a, b \in \mathbb{Z}_2\}$

is a field with 4 elements.

For every nonzero $ax+b+A\in\mathbb{F},$ one can find the inverse. Here are the inverse pairs:

$$(1 + A, 1 + A), (x + A, 1 + x + A).$$

Note that f(x) has no zeros in \mathbb{Z}_2 . But $x + A \in \mathbb{F}$ is a zero of $y^2 + y + 1 \in \mathbb{F}$.

イロト イヨト イヨト イヨト