## Chapter 17 Factorization of Polynomials



▲御 ▶ ▲ 臣 ▶

토 > 토

**Motivation** We are able to construct the solution of  $f(x) \in \mathbb{F}(x)$  in a larger field E that contains  $\mathbb{F}$  even if f(x) has no zero in  $\mathbb{F}$ .

We will need the concept of factorization of polynomial. Further, it is an extension of our study of polynomials in high school.

**Definition** Let D be an integral domain. Suppose  $f(x) \in D(x)$  is neither the zero nor a unit. Then f(x) is irreducible if f(x) = g(x)h(x) for some polynomials  $g(x), h(x) \in D[x]$  will imply g(x) or h(x) is a unit in D[x]. Otherwise, f(x) is reducible.

**Examples** (1)  $f(x) = 2x^2 + 4$  over  $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$ ? (2)  $g(x) = x^2 - 2$ ?

イロト イボト イヨト

**Theorem 17.1** Let  $\mathbb{F}$  be a field,  $f(x) \in \mathbb{F}[x]$  with degree 2 or 3. Then f(x) is reducible over  $\mathbb{F}$  if and only if f(x) has a zero in  $\mathbb{F}$ .

**Proof.** If  $f(x) = f_1(x)f_2(x)$ , then ...

**Example**  $x^2 + 1$  over  $\mathbb{Z}_3, \mathbb{Z}_5$ .

**Theorem 17.2** Let  $f(x) \in \mathbb{Z}[x]$ . Then f(x) is reducible over  $\mathbb{Q}$  if and only if it is reducible over  $\mathbb{Z}$ .

To prove the theorem, we need the following concept and lemma.

The content of  $f(x) = a_0 + \cdots + a_n x^n \in \mathbb{Z}[x]$  is  $gcd(a_0, \ldots, a_n)$ . If the content of f(x) is 1, then f(x) is primitive.

**Lemma** Suppose  $f(x), g(x) \in \mathbb{Z}[x]$  are primitive. Then f(x)g(x) is primitive.

Proof. If not, let p be a prime factor of the content of f(x)g(x), and apply the ring homomorphism  $\overline{\phi} : \mathbb{Z}[x] \to \mathbb{Z}_p[x]$  with  $\phi : \mathbb{Z} \to \mathbb{Z}_p$  by  $\phi(k) = [k]$ . We have

$$0 = \bar{\phi}(f(x)g(x)) = \bar{\phi}(f(x))\bar{\phi}(g(x))$$

so that the product of two nonzero polynomials in the integral domain  $\mathbb{Z}_p[x]$  equal to zero, which is a contradiction.

イロト イボト イヨト

Suppose  $f(x) \in \mathbb{Z}[x]$ .

We may divide f(x) by its content and assume that it is primitive.

Suppose f(x) = g(x)h(x) so that  $g(x), h(x) \in \mathbb{Q}[x]$  have lower degrees.

Then abf(x) = ag(x)bh(x) so that  $a, b \in \mathbb{N}$  are the smallest integers such that  $ag(x), bh(x) \in \mathbb{Z}[x]$ .

Suppose c and d are the contents of ag(x) and bh(x), then abf(x) has content ab and  $abf(x) = ag(x)bh(x) = (c\tilde{g}(x))(d\tilde{h}(x))$ , where  $\tilde{g}(x), \tilde{h}(x)$  is primitive. By the lemma,  $\tilde{g}(x)\tilde{h}(x)$  is primitive so that cd is the content of abf(x). Consequently, ab = cd.

Thus, ab = cd and  $f(x) = \tilde{g}(x)\tilde{h}(x)$ .

Clearly, if f(x) is reducible in  $\mathbb{Z}[x]$ , then it is reducible in  $\mathbb{Q}[x]$ .

**Example**  $6x^2 + x - 2 = (3x - 3/2)(2x + 4/3) = (2x - 1)(3x + 2).$ 

イロト イヨト イヨト イヨト

**Theorem 17.3** Let p be a prime number, and suppose

$$f(x) = a_0 + \dots + a_n x^n \in \mathbb{Z}[x]$$
 with  $n \ge 2$ .

Suppose  $\tilde{f}(x) = [a_0]_p + \dots + [a_n]_p x^n$  has degree n, i.e.,  $p \not| a_n$ . If  $\tilde{f}(x)$  is irreducible then f(x) is irreducible over  $\mathbb{Z}$  (or  $\mathbb{Q}$ ).

**Proof.** We prove the contra-positive. Suppose f(x) = g(x)h(x). Then  $\tilde{f}(x) = \tilde{g}(x)\tilde{h}(x)$  has degree *n* implies that  $\tilde{g}(x)$  and g(x) have the same degree and also  $\tilde{h}(x)$  and h(x) have the same degree. So,  $\tilde{f}(x)$  is reducible.

**Theorem 17.4** Suppose  $f(x) = a_0 + \cdots + a_n x^n \in \mathbb{Z}[x]$  with  $n \ge 2$ . If there is a prime p such that

(a) p does not divide  $a_n$ , (b)  $p^2$  does not divide  $a_0$ , and (c)  $p|a_{n-1}, \ldots, p|a_0$ ,

then f(x) is irreducible over  $\mathbb{Z}$ . *Proof.* Assume f(x) = g(x)h(x) with

 $g(x) = b_0 + \dots + b_r x^r$  and  $h(x) = c_0 + \dots + c_s x^s$ .

We may assume that  $p|b_0$  and p does not divide  $c_0$ .

Note that p does not divide  $b_r c_s$  so that p does not divide  $b_r$ .

Let t be the smallest integer such that p does not divide  $b_t$ .

Then

$$p|(b_t a_0 + b_{t-1}a_1 + \dots + b_0a_t)$$

so that  $p|b_t a_0$ , a contradiction.

**Corollary** For any prime *p*, the *p*th cyclotomic polynomial

$$\Phi_p(x) = \frac{x^p - 1}{x - 1} = x^{p - 1} + x^{p - 2} + \dots + 1$$

is irreducible over  $\mathbb{Q}$ .

Proof.  $\Phi(y+1) = \sum_{j=k}^{p} {p \choose k} y^k \dots$ 

イロト イヨト イヨト イヨト

3

**Theorem 17.5** In  $\mathbb{F}[x]$ ,  $\langle p(x) \rangle$  is maximal if and only if p(x) is irreducible.

**Proof.** If p(x) = g(x)h(x) is reducible, then  $\langle p(x) \rangle \subseteq \langle g(x) \rangle$ .

If A is an ideal not equal to  $\mathbb{F}[x]$  and not equal to  $\langle p(x) \rangle$ such that  $\langle p(x) \rangle \subseteq A$ , then  $A = \langle g(x) \rangle$  and p(x) = g(x)h(x)such that g(x) has degree less than p(x).

**Corollary** Let  $\mathbb{F}$  be a field. Suppose p(x) is irreducible. (a) Then  $E = \mathbb{F}[x]/\langle p(x) \rangle$  is a field. (b) If  $u(x), v(x) \in \mathbb{F}[x]$  and p(x)|u(x)v(x), then p(x)|u(x) or p(x)|v(x). (c) The polynomial  $p(y) \in E$  has a zero in E, namely,  $x + \langle p(x) \rangle$ .

Proof. (a) By the fact that D/A is a field if and only if A is a maximal.
(b) A = ⟨p(x)⟩ is maximal, and hence is prime....
(c) Direct checking.

(日本) (日本) (日本)

**Theorem 17.6** Every  $f(x) \in \mathbb{F}[x]$  can be written as a product of irreducible polynomials. The factorization is unique up to a rearrangement of the factors and multiples of the factors by the field elements.

**Proof.** By induction on degree.  $f(x) = \prod f_i(x)$  such that every  $f_i(x)$  is irreducible. If  $\prod f_i(x) = \prod g_j(x)$ , then  $f_i(x)$  divides some  $g_j$  ...

## Examples

- **()** Show that  $3x^5 + 15x^4 20x^3 + 10x + 20$  is irreducible over  $\mathbb{Q}$ .
- 2 If  $r \in \mathbb{R}$  such that  $r + 1/r \in \mathbb{Z} \setminus \{2, -2\}$ , than r is irrational.

3 Show that 
$$x^4 + 1$$
 is reducible over  $\mathbb{Z}_p$  for any prime  $p$ .  
If  $p = 2$  then  $x^4 + 1 = (x^2 + 1)^2$ . Suppose  $p > 2$ .  
If there is  $a^2 = -1$ , then  $x^4 + 1 = (x^2 + a)(x^2 - a)$ .  
If there is  $a^2 = 2$ , then  $x^4 + 1 = (x^2 + ax + a)(x^2 - ax + 1)$ .  
If there is  $a^2 = -2$ , then  $x^4 + 1 = (x^2 + ax - 1)(x^2 - ax - 1)$ .  
To show that one of the above holds, consider  $\phi : \mathbb{Z}_p^* \to \mathbb{Z}_p^*$  defined by  
 $\phi(x) = x^2$ . Then ker $(\phi) = \{-1, 1\}$ . If  $-1, 2 \in H = \phi(\mathbb{Z}_p^*)$  then we are

done. Assume not. Since H is isomorphic to  $\mathbb{Z}_p^*/\ker(\phi)$  has index 2, we see that  $-H = 2H \neq H$  and H = (-H)(-H) = (-2)H, i.e.,  $-2 \in H$ .

**Theorem 17.6** [Unique Factorization in  $\mathbb{Z}[x]$ ] Every polynomial in  $\mathbb{Z}[x]$  can be uniquely express as  $b_1 \cdots b_s p_1(x) \cdots p_m(x)$ , where  $b_1, \ldots, b_s$  are irreducible polynomials of degree zero, and  $p_1(x), \ldots, p_m(x)$  are irreducible polynomials of positive degree.

## An application to weird dice construction.

Probabilities of the sum  $m \in \{2, ..., 12\}$  in rowing two dices are determined by the coefficients of:

$$(x + \dots + x^{6})(x + \dots + x^{6})$$
  
=  $[x(x + 1)(x^{2} + x + 1)(x^{2} - x + 1)]^{2}$   
=  $(x + x^{2} + x^{2} + x^{3} + x^{3} + x^{4})(x + x^{3} + x^{4} + x^{5} + x^{6} + x^{8}).$ 

(日本) (日本) (日本)