Chapter 17 Factorization of Polynomials

Motivation We are able to construct the solution of $f(x) \in \mathbb{F}(x)$ in a larger field E that contains \mathbb{F} even if $f(x)$ has no zero in \mathbb{F}.

We will need the concept of factorization of polynomial. Further, it is an extension of our study of polynomials in high school.

Definition Let D be an integral domain. Suppose $f(x) \in D(x)$ is neither the zero nor a unit. Then $f(x)$ is irreducible if $f(x)=g(x) h(x)$ for some polynomials $g(x), h(x) \in D[x]$ will imply $g(x)$ or $h(x)$ is a unit in $D[x]$. Otherwise, $f(x)$ is reducible.
Examples (1) $f(x)=2 x^{2}+4$ over $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$?
(2) $g(x)=x^{2}-2$?

Theorem 17.1 Let \mathbb{F} be a field, $f(x) \in \mathbb{F}[x]$ with degree 2 or 3 . Then $f(x)$ is reducible over \mathbb{F} if and only if $f(x)$ has a zero in \mathbb{F}.

Proof. If $f(x)=f_{1}(x) f_{2}(x)$, then \ldots
Example $x^{2}+1$ over $\mathbb{Z}_{3}, \mathbb{Z}_{5}$.
Theorem 17.2 Let $f(x) \in \mathbb{Z}[x]$. Then $f(x)$ is reducible over \mathbb{Q} if and only if it is reducible over \mathbb{Z}.

To prove the theorem, we need the following concept and lemma.
The content of $f(x)=a_{0}+\cdots+a_{n} x^{n} \in \mathbb{Z}[x]$ is $\operatorname{gcd}\left(a_{0}, \ldots, a_{n}\right)$. If the content of $f(x)$ is 1 , then $f(x)$ is primitive.

Lemma Suppose $f(x), g(x) \in \mathbb{Z}[x]$ are primitive. Then $f(x) g(x)$ is primitive. Proof. If not, let p be a prime factor of the content of $f(x) g(x)$, and apply the ring homomorphism $\bar{\phi}: \mathbb{Z}[x] \rightarrow \mathbb{Z}_{p}[x]$ with $\phi: \mathbb{Z} \rightarrow \mathbb{Z}_{p}$ by $\phi(k)=[k]$. We have

$$
0=\bar{\phi}(f(x) g(x))=\bar{\phi}(f(x)) \bar{\phi}(g(x))
$$

so that the product of two nonzero polynomials in the integral domain $\mathbb{Z}_{p}[x]$ equal to zero, which is a contradiction.

Proof of Theorem 17.2

Suppose $f(x) \in \mathbb{Z}[x]$.
We may divide $f(x)$ by its content and assume that it is primitive.
Suppose $f(x)=g(x) h(x)$ so that $g(x), h(x) \in \mathbb{Q}[x]$ have lower degrees.
Then $a b f(x)=a g(x) b h(x)$ so that $a, b \in \mathbb{N}$ are the smallest integers such that $a g(x), b h(x) \in \mathbb{Z}[x]$.

Suppose c and d are the contents of $a g(x)$ and $b h(x)$, then $a b f(x)$ has content $a b$ and $a b f(x)=a g(x) b h(x)=(c \tilde{g}(x))(d \tilde{h}(x))$, where $\tilde{g}(x), \tilde{h}(x)$ is primitive. By the lemma, $\tilde{g}(x) \tilde{h}(x)$ is primitive so that $c d$ is the content of $\operatorname{abf}(x)$. Consequently, $a b=c d$.

Thus, $a b=c d$ and $f(x)=\tilde{g}(x) \tilde{h}(x)$.
Clearly, if $f(x)$ is reducible in $\mathbb{Z}[x]$, then it is reducible in $\mathbb{Q}[x]$.
Example $6 x^{2}+x-2=(3 x-3 / 2)(2 x+4 / 3)=(2 x-1)(3 x+2)$.

Theorem 17.3 Let p be a prime number, and suppose

$$
f(x)=a_{0}+\cdots+a_{n} x^{n} \in \mathbb{Z}[x] \quad \text { with } \quad n \geq 2
$$

Suppose $\tilde{f}(x)=\left[a_{0}\right]_{p}+\cdots+\left[a_{n}\right]_{p} x^{n}$ has degree n, i.e., $p \nmid a_{n}$.
If $\tilde{f}(x)$ is irreducible then $f(x)$ is irreducible over \mathbb{Z} (or \mathbb{Q}).
Proof. We prove the contra-positive. Suppose $f(x)=g(x) h(x)$. Then $\tilde{f}(x)=\tilde{g}(x) \tilde{h}(x)$ has degree n implies that $\tilde{g}(x)$ and $g(x)$ have the same degree and also $\tilde{h}(x)$ and $h(x)$ have the same degree. So, $\tilde{f}(x)$ is reducible.

Theorem 17.4 Suppose $f(x)=a_{0}+\cdots+a_{n} x^{n} \in \mathbb{Z}[x]$ with $n \geq 2$. If there is a prime p such that
(a) p does not divide a_{n},
(b) p^{2} does not divide a_{0}, and
(c) $p\left|a_{n-1}, \ldots, p\right| a_{0}$,
then $f(x)$ is irreducible over \mathbb{Z}.
Proof. Assume $f(x)=g(x) h(x)$ with

$$
g(x)=b_{0}+\cdots+b_{r} x^{r} \text { and } h(x)=c_{0}+\cdots+c_{s} x^{s} .
$$

We may assume that $p \mid b_{0}$ and p does not divide c_{0}.
Note that p does not divide $b_{r} c_{s}$ so that p does not divide b_{r}.
Let t be the smallest integer such that p does not divide b_{t}.
Then

$$
p \mid\left(b_{t} a_{0}+b_{t-1} a_{1}+\cdots+b_{0} a_{t}\right)
$$

so that $p \mid b_{t} a_{0}$, a contradiction.

Corollary For any prime p, the p th cyclotomic polynomial

$$
\Phi_{p}(x)=\frac{x^{p}-1}{x-1}=x^{p-1}+x^{p-2}+\cdots+1
$$

is irreducible over \mathbb{Q}.
Proof. $\Phi(y+1)=\sum_{j=k}^{p}\binom{p}{k} y^{k} \ldots$

Solution of a polynomial in an extension field

Theorem 17.5 In $\mathbb{F}[x],\langle p(x)\rangle$ is maximal if and only if $p(x)$ is irreducible.
Proof. If $p(x)=g(x) h(x)$ is reducible, then $\langle p(x)\rangle \subseteq\langle g(x)\rangle$.
If A is an ideal not equal to $\mathbb{F}[x]$ and not equal to $\langle p(x)\rangle$ such that $\langle p(x)\rangle \subseteq A$, then $A=\langle g(x)\rangle$ and $p(x)=g(x) h(x)$ such that $g(x)$ has degree less than $p(x)$.

Corollary Let \mathbb{F} be a field. Suppose $p(x)$ is irreducible.
(a) Then $E=\mathbb{F}[x] /\langle p(x)\rangle$ is a field.
(b) If $u(x), v(x) \in \mathbb{F}[x]$ and $p(x) \mid u(x) v(x)$, then $p(x) \mid u(x)$ or $p(x) \mid v(x)$.
(c) The polynomial $p(y) \in E$ has a zero in E, namely, $x+\langle p(x)\rangle$.

Proof. (a) By the fact that D / A is a field if and only if A is a maximal.
(b) $A=\langle p(x)\rangle$ is maximal, and hence is prime....
(c) Direct checking.

Unique factorization in $\mathbb{F}[x]$

Theorem 17.6 Every $f(x) \in \mathbb{F}[x]$ can be written as a product of irreducible polynomials. The factorization is unique up to a rearrangement of the factors and multiples of the factors by the field elements.

Proof. By induction on degree. $f(x)=\prod f_{i}(x)$ such that every $f_{i}(x)$ is irreducible. If $\prod f_{i}(x)=\prod g_{j}(x)$, then $f_{i}(x)$ divides some $g_{j} \ldots$

Examples

(1) Show that $3 x^{5}+15 x^{4}-20 x^{3}+10 x+20$ is irreducible over \mathbb{Q}.
(2) If $r \in \mathbb{R}$ such that $r+1 / r \in \mathbb{Z} \backslash\{2,-2\}$, than r is irrational.
(3) Show that $x^{4}+1$ is reducible over \mathbb{Z}_{p} for any prime p.

If $p=2$ then $x^{4}+1=\left(x^{2}+1\right)^{2}$. Suppose $p>2$.
If there is $a^{2}=-1$, then $x^{4}+1=\left(x^{2}+a\right)\left(x^{2}-a\right)$.
If there is $a^{2}=2$, then $x^{4}+1=\left(x^{2}+a x+a\right)\left(x^{2}-a x+1\right)$.
If there is $a^{2}=-2$, then $x^{4}+1=\left(x^{2}+a x-1\right)\left(x^{2}-a x-1\right)$.
To show that one of the above holds, consider $\phi: \mathbb{Z}_{p}^{*} \rightarrow \mathbb{Z}_{p}^{*}$ defined by $\phi(x)=x^{2}$. Then $\operatorname{ker}(\phi)=\{-1,1\}$. If $-1,2 \in H=\phi\left(\mathbb{Z}_{p}^{*}\right)$ then we are done. Assume not. Since H is isomorphic to $\mathbb{Z}_{p}^{*} / \operatorname{ker}(\phi)$ has index 2 , we see that $-H=2 H \neq H$ and $H=(-H)(-H)=(-2) H$, i.e., $-2 \in H$.

Theorem 17.6 [Unique Factorization in $\mathbb{Z}[x]]$ Every polynomial in $\mathbb{Z}[x]$ can be uniquely express as $b_{1} \cdots b_{s} p_{1}(x) \cdots p_{m}(x)$, where b_{1}, \ldots, b_{s} are irreducible polynomials of degree zero, and $p_{1}(x), \ldots, p_{m}(x)$ are irreducible polynomials of positive degree.

An application to weird dice construction.

Probabilities of the sum $m \in\{2, \ldots, 12\}$ in rowing two dices are determined by the coefficients of:

$$
\begin{aligned}
& \left(x+\cdots+x^{6}\right)\left(x+\cdots+x^{6}\right) \\
= & {\left[x(x+1)\left(x^{2}+x+1\right)\left(x^{2}-x+1\right)\right]^{2} } \\
= & \left(x+x^{2}+x^{2}+x^{3}+x^{3}+x^{4}\right)\left(x+x^{3}+x^{4}+x^{5}+x^{6}+x^{8}\right)
\end{aligned}
$$

