Chapter 18 Divisibility in Integral Domains

Chapter 18 Divisibility in Integral Domains

回ト・モト・モー

臣

Motivation Prime and composite numbers in \mathbb{Z} have different meanings in an Integral Domain!

Definition Let D be an integral domain, and $a, b, c \in D$. (a) If a = ub for some unit u, then a and b are associates. (b) If a = bc will imply b or c is a unit, then a is irreducible. (c) If a|(bc) implies a|b or a|c, then a is a prime.

Example Consider $D = \mathbb{Z}[d] = \{a + b\sqrt{d} : a, b \in \mathbb{Z}\}$, where $d \neq 1$ and not divisible by p^2 for a prime.

Define $N(a + b\sqrt{d}) = |a^2 - db^2|$. Then

- N(x) = 0 if and only if x = 0; N(xy) = N(x)N(y);
- N(x) = 1 if and only if x is a unit;
- if N(x) is prime then x is irreducible in $\mathbb{Z}[\sqrt{d}]$.

イロト イボト イヨト

Example 1 In $D = \mathbb{Z}[-3] = \{a + b\sqrt{-3} : a, b \in \mathbb{Z}\}$, the element 2 is irreducible, but it is not a prime.

Proof. If 2 = bc and $x, y \in D$ are not units, then 4 = N(2) = N(x)N(y). So, $2 = N(x) = N(a + b\sqrt{-3}) = a^2 + 3b^2$, a contradiction.

Note that $4 = (1 + \sqrt{-3})(1 - \sqrt{-3})$ is divisible by 2, but none of $(1 \pm \sqrt{-3})$ is divisible by 2....

Example 2 The element 7 is irreducible in $\mathbb{Z}[\sqrt{5}]$.

・ロト ・ 同ト ・ ヨト ・ ヨト

Theorem 18.1 In an integral domain, every prime is an irreducible.

Proof. Suppose $p \in D$ is prime. Assume p = ab. Then p|a or p|b. WOLOG, a = pt so that p = ptb and tb = 1, i.e., b is a unit.

Theorem 18.2 In a PID, every irreducible is a prime.

Proof. Suppose a is irreducible. and a|(bc). Then $A = \{ax + by : x, y \in D\}$ is an ideal so that $A = \langle p \rangle$. So, a = pt, and p or t is a unit. If p is a unit, then A = D and we may assume that ax + by = 1 so that c = (ax + by)c = acx + bcy is divisible by a. If t is a unit, then $b = pr = (at^{-1})r = a(t^{-1}r)$ is divisible by a.

・ 同 ト ・ ヨ ト ・ ヨ ト

Definition An integral domain (ID) D is a Unique Factorization Domain (UFD) if every element is a product of irreducibles of D, and the factors are uniquely determined up to associates and the rearrangement.

It is a Euclidean domain (ED) if there is a function $d:D^*\to\mathbb{N}$ (called a measure) such that

- $\bullet \ d(a) \leq d(ab) \text{ for all } a,b \in D^*\text{,}$
- for any $a, b \in D$ with $b \neq 0$ there are $q, r \in D$ such that a = bq + r with r = 0 or d(r) < f(b).

不得 とうぼう うまとう

Theorem 18.3/18.4 ED \subset PID \subset UFD \subset ID.

Proof. If D is ED, then for any ideal A, let $a \in A$ with minimum positive d value. Then $A = \langle a \rangle$. Else, there is $b \neq aq$ so that b = aq + r with $r \neq 0$ and d(r) < d(a), a contradiction.

To prove PID \subset UFD, we need the following.

Lemma In a PID, any strictly increasing chain of ideals $I_1 \subset I_2 \subset I_3 \subset \cdots$ must be finite in length. *Proof.* Let $I = \bigcup U_i$. It is an ideal, and $I = \langle a \rangle$ for some $a \in I_r$. Then

 $I = I_r$.

Chapter 18 Divisibility in Integral Domains

(日本)(日本)(日本)

Proof of Theorem 18.3

Let D be an PID. Suppose $a \in D$ is nonzero and non-unit. **Claim 1.** a has an irreducible factor. If a is irreducible, we are done. If not, $a = b_1a_1$ such that b_1 is not unit, and $a_1 \neq 0$. If a_1 is irreducible, then we are done. If not, write $a_1 = b_2a_2$ such that b_2 is not unit, and $a_2 \neq 0$. Repeating, we get a chain of elements a, a_2, a_2, \ldots and $\langle a \rangle \subset \langle a_2 \rangle \subset \langle a_2 \rangle \subset \cdots$.

By the lemma, this chain is finite, and thus we get a irreducible factor a_r .

Claim 2. *a* can be factored as the product of irreducibles. Apply the above process to get $a = p_1c_1 = p_1p_2c_2 = p_1p_2p_3c_3\cdots$ so that p_1, p_2, \ldots are irreducible and $\langle a \rangle \subset \langle c_1 \rangle \subset \langle c_2 \rangle \subset \cdots$. Again, the chain must stop after finitely many steps. Thus, $a = p_1 \cdots p_r$.

Claim 3. The irreducible factors are unique (up to associates and permutation). Let $a = p_1 \cdots p_r = q_1 \cdots q_s$. Now, in a PID, $p_1|q_1 \cdots q_s$ implies that $p_1|q_i$ for some *i*. So, $q_i = u_1p_1$. Repeating this, we see that there are associates of p_1, \ldots, p_r on the right sides. Canceling p_1, \ldots, p_r on both sides, we see that the right side will be left with a unit equal to 1. The result follows.

Example $\mathbb{F}[x]$ is ED.

Example $\mathbb{Z}[\sqrt{-3}]$ is ID, but not UFD, say, $4 = 2 \cdot 2 = (1 + \sqrt{-3})(1 - \sqrt{-3})$. **Example** $\mathbb{Z}[x]$ is UFD but not PID; $A = \langle 2, x \rangle \neq \langle h(x) \rangle$ for any $h(x) \in \mathbb{Z}[x]$. **Example** $R = \mathbb{Z}[\frac{1}{2}(1 + \sqrt{-19})]$ is a PID and not ED.

See http://www.maths.qmul.ac.uk/~raw/MTH5100/PIDnotED.pdf Theorem 18.5 If D is UFD, then D[x] is a UFD.

Proof. Similar to that of $\mathbb{Z}[x]$.

イロン スロン メロン スロン 一日