Chapter 18 Divisibility in Integral Domains

A class of examples

Motivation Prime and composite numbers in \mathbb{Z} have different meanings in an Integral Domain!

Definition Let D be an integral domain, and $a, b, c \in D$.
(a) If $a=u b$ for some unit u, then a and b are associates.
(b) If $a=b c$ will imply b or c is a unit, then a is irreducible.
(c) If $a \mid(b c)$ implies $a \mid b$ or $a \mid c$, then a is a prime.

Example Consider $D=\mathbb{Z}[d]=\{a+b \sqrt{d}: a, b \in \mathbb{Z}\}$, where $d \neq 1$ and not divisible by p^{2} for a prime.

Define $N(a+b \sqrt{d})=\left|a^{2}-d b^{2}\right|$. Then

- $N(x)=0$ if and only if $x=0 ; N(x y)=N(x) N(y)$;
- $N(x)=1$ if and only if x is a unit;
- if $N(x)$ is prime then x is irreducible in $\mathbb{Z}[\sqrt{d}]$.

Specific examples

Example $1 \ln D=\mathbb{Z}[-3]=\{a+b \sqrt{-3}: a, b \in \mathbb{Z}\}$, the element 2 is irreducible, but it is not a prime.

Proof. If $2=b c$ and $x, y \in D$ are not units, then $4=N(2)=N(x) N(y)$. So, $2=N(x)=N(a+b \sqrt{-3})=a^{2}+3 b^{2}$, a contradiction.

Note that $4=(1+\sqrt{-3})(1-\sqrt{-3})$ is divisible by 2 , but none of $(1 \pm \sqrt{-3})$ is divisible by $2 \ldots$.

Example 2 The element 7 is irreducible in $\mathbb{Z}[\sqrt{5}]$.

More results

Theorem 18.1 In an integral domain, every prime is an irreducible.
Proof. Suppose $p \in D$ is prime. Assume $p=a b$. Then $p \mid a$ or $p \mid b$. WOLOG, $a=p t$ so that $p=p t b$ and $t b=1$, i.e., b is a unit.

Theorem 18.2 In a PID, every irreducible is a prime.
Proof. Suppose a is irreducible. and $a \mid(b c)$. Then $A=\{a x+b y: x, y \in D\}$ is an ideal so that $A=\langle p\rangle$. So, $a=p t$, and p or t is a unit.
If p is a unit, then $A=D$ and we may assume that $a x+b y=1$ so that $c=(a x+b y) c=a c x+b c y$ is divisible by a.
If t is a unit, then $b=p r=\left(a t^{-1}\right) r=a\left(t^{-1} r\right)$ is divisible by a.

More definitions

Definition An integral domain (ID) D is a Unique Factorization Domain (UFD) if every element is a product of irreducibles of D, and the factors are uniquely determined up to associates and the rearrangement.

It is a Euclidean domain (ED) if there is a function $d: D^{*} \rightarrow \mathbb{N}$ (called a measure) such that

- $d(a) \leq d(a b)$ for all $a, b \in D^{*}$,
- for any $a, b \in D$ with $b \neq 0$ there are $q, r \in D$ such that $a=b q+r$ with $r=0$ or $d(r)<f(b)$.

Main result

Theorem 18.3/18.4 ED \subset PID \subset UFD \subset ID.
Proof. If D is ED, then for any ideal A, let $a \in A$ with minimum positive d value. Then $A=\langle a\rangle$. Else, there is $b \neq a q$ so that $b=a q+r$ with $r \neq 0$ and $d(r)<d(a)$, a contradiction.
To prove PID \subset UFD, we need the following.
Lemma In a PID, any strictly increasing chain of ideals $I_{1} \subset I_{2} \subset I_{3} \subset \ldots$ must be finite in length.
Proof. Let $I=\cup U_{i}$. It is an ideal, and $I=\langle a\rangle$ for some $a \in I_{r}$. Then $I=I_{r}$.

Let D be an PID. Suppose $a \in D$ is nonzero and non-unit.
Claim 1. a has an irreducible factor.
If a is irreducible, we are done.
If not, $a=b_{1} a_{1}$ such that b_{1} is not unit, and $a_{1} \neq 0$.
If a_{1} is irreducible, then we are done.
If not, write $a_{1}=b_{2} a_{2}$ such that b_{2} is not unit, and $a_{2} \neq 0$.
Repeating, we get a chain of elements a, a_{2}, a_{2}, \ldots and

$$
\langle a\rangle \subset\left\langle a_{2}\right\rangle \subset\left\langle a_{2}\right\rangle \subset \cdots
$$

By the lemma, this chain is finite, and thus we get a irreducible factor a_{r}.
Claim 2. a can be factored as the product of irreducibles.
Apply the above process to get $a=p_{1} c_{1}=p_{1} p_{2} c_{2}=p_{1} p_{2} p_{3} c_{3} \cdots$ so that
p_{1}, p_{2}, \ldots are irreducible and $\langle a\rangle \subset\left\langle c_{1}\right\rangle \subset\left\langle c_{2}\right\rangle \subset$.
Again, the chain must stop after finitely many steps. Thus, $a=p_{1} \cdots p_{r}$.
Claim 3. The irreducible factors are unique (up to associates and permutation). Let $a=p_{1} \cdots p_{r}=q_{1} \cdots q_{s}$. Now, in a PID, $p_{1} \mid q_{1} \cdots q_{s}$ implies that $p_{1} \mid q_{i}$ for some i. So, $q_{i}=u_{1} p_{1}$. Repeating this, we see that there are associates of p_{1}, \ldots, p_{r} on the right sides. Canceling p_{1}, \ldots, p_{r} on both sides, we see that the right side will be left with a unit equal to 1 . The result follows.

Example $\mathbb{F}[x]$ is ED.
Example $\mathbb{Z}[\sqrt{-3}]$ is ID, but not UFD, say, $4=2 \cdot 2=(1+\sqrt{-3})(1-\sqrt{-3})$.
Example $\mathbb{Z}[x]$ is UFD but not PID; $A=\langle 2, x\rangle \neq\langle h(x)\rangle$ for any $h(x) \in \mathbb{Z}[x]$.
Example $R=\mathbb{Z}\left[\frac{1}{2}(1+\sqrt{-19})\right]$ is a PID and not ED.
See http://www.maths.qmul.ac.uk/~raw/MTH5100/PIDnotED.pdf
Theorem 18.5 If D is UFD, then $D[x]$ is a UFD.
Proof. Similar to that of $\mathbb{Z}[x]$.

