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A class of examples

Motivation Prime and composite numbers in Z have different meanings in
an Integral Domain!

Definition Let D be an integral domain, and a, b, c ∈ D.
(a) If a = ub for some unit u, then a and b are associates.
(b) If a = bc will imply b or c is a unit, then a is irreducible.
(c) If a|(bc) implies a|b or a|c, then a is a prime.

Example Consider D = Z[d] = {a + b
√

d : a, b ∈ Z}, where d 6= 1 and not
divisible by p2 for a prime.

Define N(a + b
√

d) = |a2 − db2|. Then

N(x) = 0 if and only if x = 0; N(xy) = N(x)N(y);
N(x) = 1 if and only if x is a unit;
if N(x) is prime then x is irreducible in Z[

√
d].
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Specific examples

Example 1 In D = Z[−3] = {a + b
√
−3 : a, b ∈ Z}, the element 2 is

irreducible, but it is not a prime.

Proof. If 2 = bc and x, y ∈ D are not units, then 4 = N(2) = N(x)N(y). So,
2 = N(x) = N(a + b

√
−3) = a2 + 3b2, a contradiction.

Note that 4 = (1 +
√
−3)(1−

√
−3) is divisible by 2, but none of (1±

√
−3)

is divisible by 2....

Example 2 The element 7 is irreducible in Z[
√

5].
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More results

Theorem 18.1 In an integral domain, every prime is an irreducible.

Proof. Suppose p ∈ D is prime. Assume p = ab. Then p|a or p|b. WOLOG,
a = pt so that p = ptb and tb = 1, i.e., b is a unit.

Theorem 18.2 In a PID, every irreducible is a prime.

Proof. Suppose a is irreducible. and a|(bc). Then A = {ax + by : x, y ∈ D}
is an ideal so that A = 〈p〉. So, a = pt, and p or t is a unit.
If p is a unit, then A = D and we may assume that ax + by = 1 so that
c = (ax + by)c = acx + bcy is divisible by a.
If t is a unit, then b = pr = (at−1)r = a(t−1r) is divisible by a.
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More definitions

Definition An integral domain (ID) D is a Unique Factorization Domain (UFD)
if every element is a product of irreducibles of D, and the factors are uniquely
determined up to associates and the rearrangement.

It is a Euclidean domain (ED) if there is a function d : D∗ → N (called a
measure) such that

d(a) ≤ d(ab) for all a, b ∈ D∗,
for any a, b ∈ D with b 6= 0 there are q, r ∈ D such that a = bq + r with
r = 0 or d(r) < f(b).
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Main result

Theorem 18.3/18.4 ED ⊂ PID ⊂ UFD ⊂ ID.
Proof. If D is ED, then for any ideal A, let a ∈ A with minimum positive d
value. Then A = 〈a〉. Else, there is b 6= aq so that b = aq + r with r 6= 0
and d(r) < d(a), a contradiction.

To prove PID ⊂ UFD, we need the following.

Lemma In a PID, any strictly increasing chain of ideals I1 ⊂ I2 ⊂ I3 ⊂ · · ·
must be finite in length.
Proof. Let I = ∪Ui. It is an ideal, and I = 〈a〉 for some a ∈ Ir. Then
I = Ir.
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Proof of Theorem 18.3

Let D be an PID. Suppose a ∈ D is nonzero and non-unit.
Claim 1. a has an irreducible factor.
If a is irreducible, we are done.
If not, a = b1a1 such that b1 is not unit, and a1 6= 0.
If a1 is irreducible, then we are done.
If not, write a1 = b2a2 such that b2 is not unit, and a2 6= 0.
Repeating, we get a chain of elements a, a2, a2, . . . and

〈a〉 ⊂ 〈a2〉 ⊂ 〈a2〉 ⊂ · · · .
By the lemma, this chain is finite, and thus we get a irreducible factor ar.

Claim 2. a can be factored as the product of irreducibles.
Apply the above process to get a = p1c1 = p1p2c2 = p1p2p3c3 · · · so that
p1, p2, . . . are irreducible and 〈a〉 ⊂ 〈c1〉 ⊂ 〈c2〉 ⊂ · · · .
Again, the chain must stop after finitely many steps. Thus, a = p1 · · · pr.

Claim 3. The irreducible factors are unique (up to associates and permutation).
Let a = p1 · · · pr = q1 · · · qs. Now, in a PID, p1|q1 · · · qs implies that p1|qi for
some i. So, qi = u1p1. Repeating this, we see that there are associates of
p1, . . . , pr on the right sides. Canceling p1, . . . , pr on both sides, we see that
the right side will be left with a unit equal to 1. The result follows.
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Example F[x] is ED.

Example Z[
√
−3] is ID, but not UFD, say, 4 = 2 · 2 = (1 +

√
−3)(1−

√
−3).

Example Z[x] is UFD but not PID; A = 〈2, x〉 6= 〈h(x)〉 for any h(x) ∈ Z[x].

Example R = Z[ 1
2 (1 +

√
−19)] is a PID and not ED.

See http://www.maths.qmul.ac.uk/̃ raw/MTH5100/PIDnotED.pdf

Theorem 18.5 If D is UFD, then D[x] is a UFD.

Proof. Similar to that of Z[x].
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