Chapter 19 Vector Spaces

Chapter 19 Vector Spaces

토 > 토

A vector space V over a field \mathbb{F} is an Abelian group (V, +) with a scalar multiplication μv for any $\mu \in \mathbb{F}$ and $v \in V$ such that 1v = v, (ab)v = a(bv), a(u + v) = au + av (a + b)v = av + bv for any $a, b \in \mathbb{F}$ and $u, v \in V$.

Examples \mathbb{F}^n , $M_n(\mathbb{F})$, $\mathbb{F}[x]$.

Examples An extension field \mathbb{E} over the ground field.

(a) \mathbb{C} over \mathbb{R} . (b) \mathbb{R} over \mathbb{Q} . (c) $\mathbb{Z}_p[x]/\langle f(x) \rangle$ over \mathbb{Z}_p .

- A set $S \subseteq V$ is linearly dependent if there is a nontrivial combination of a finite collection of vectors in S equal to 0.
- It is a basis if V if it is a spanning set of V.

・ロト ・日ト ・ヨト ・ヨト

Theorem Every vector space has a basis.

If V has a basis with n elements, then every basis has n elements. In such a case, we say that V has dimension n. We use the convention that dimension V is 0 if $V = \{0\}$.

Question Can we say that two bases of a vector space must have the same cardinality? [A writing project?]

Examples \mathbb{F}^n , $M_n(\mathbb{F})$, $\mathbb{F}[x]$.

Examples An extension field \mathbb{E} over the ground field.

(a) \mathbb{C} over \mathbb{R} . (b) \mathbb{R} over \mathbb{Q} . (c) $\mathbb{Z}_p[x]/\langle f(x) \rangle$ over \mathbb{Z}_p .

イロト イヨト イヨト イヨト