Chapter 20 Extension fields

Chapter 20 Extension fields

イロト イヨト イヨト イヨト

臣

590

Definition An extension field \mathbb{E} of a given field \mathbb{F} is a field such that the operations of \mathbb{F} are those of \mathbb{E} restricted to \mathbb{F} .

Theorem 20.1 Let $f(x) \in \mathbb{F}[x]$ be a nonconstant polynomial. Then there is an extension field \mathbb{E} in which f(x) has a zero.

Proof. May assume that f(x) is irreducible; construct $\mathbb{E} = \mathbb{F}[x]/\langle f(x) \rangle$. \Box

Example Let $f(x) = 2x + 1 \in \mathbb{Z}_4[x]$. Then f(x) does not have zero in any ring R containing \mathbb{Z}_4 as a subring.

Proof. If $\beta \in R$ is a zero, then $0 = 2\beta + 1$ so that $0 = 2(2\beta + 1) = 4\beta + 2$, contradiction.

イロン 不同 とうほどう ほどう

Definition Let \mathbb{F} has an extension field, and $a_1, \ldots, a_n \in \mathbb{E}$. Then $\mathbb{F}(a_1, \ldots, a_n)$ is the intersection all subfields of \mathbb{E} containing $\mathbb{F} \cup \{a_1, \ldots, a_n\}$.

Definition Let \mathbb{E} be an extension field of \mathbb{F} , and $f(x) \in \mathbb{F}[x]$ has degree $n \ge 1$. We say that f(x) splits in \mathbb{E} if there are a, a_1, \ldots, a_n such that

$$f(x) = a(x - a_1) \cdots (x - a_n).$$

We call \mathbb{E} a splitting field for f(x) if $\mathbb{E} = \mathbb{F}(a_1, \ldots, a_n)$.

Theorem 20.2 Let \mathbb{F} be a field and let $f(x) \in \mathbb{F}[x]$ be non-constant. Then there is a splitting field of f(x).

Proof. Induct on deg(f(x)) = n. If n = 1, then $\mathbb{E} = \mathbb{F}$. For larger n, let g(x) be a irreducible factor of f(x), then $\mathbb{E} = \mathbb{F}[x]/\langle g(x) \rangle$ contains a zero a_1 of g(x). Then $f(x) = (x - a_1)h(x) \in \mathbb{E}[x]$. By induction assumption, there is a splitting field K of \mathbb{E} . One can then find a splitting field K of f(x).

イロト イヨト イヨト イヨト 三日

Example Consider $f(x) = x^4 - x^2 - 2 = (x^2 - 2)(x^2 + 1) \in \mathbb{Q}[x]$. Then the splitting field equals

$$\mathbb{Q}(\sqrt{2},i) = \{(a+bi) + (c+di)\sqrt{2} : a,b,c,d \in \mathbb{Q}\}.$$

Theorem 20.3 Let a be a zero of the irreducible polynomial $p(x) \in \mathbb{F}[x]$. Then $\mathbb{F}(a)$ is isomorphic to $\mathbb{F}(x)/\langle p(x) \rangle$. If p(x) has degree n, then $\mathbb{F}(a)$ is a vector space over \mathbb{F} with a basis $\{1, a, a^2 \cdots, a^{n-1}\}$. If b is another zero of the irreducible polynomial, then $\mathbb{F}(a)$ and $\mathbb{F}(b)$ are isomporphic.

Proof. Define $\phi : \mathbb{F}[x] \to \mathbb{F}(a)$ by $\phi(f(x)) = f(a)$. Then $Ker(\phi) = \langle p(x) \rangle$. By the isomorphism theorem, $\mathbb{F}[x]/Ker(\phi) \sim \mathbb{F}(a)$

Corollary Suppose f(x) is irreducible in $\mathbb{F}[x]$ with zeros in extension fields \mathbb{E} and \mathbb{E}' , respectively. Then F(a) and F(b) are isomorphic. *Proof.* They are isomorphic to $\mathbb{F}[x]/\langle f(x) \rangle$.

イロト 人間 トイヨト イヨト

Theorem 20.4 Suppose $f(x) \in \mathbb{F}[x]$ with a splitting field \mathbb{E} . Let $\phi : \mathbb{F} \to \mathbb{F}'$ be a field isomorphism. Then $\phi(f(x))$ is irreducible in $\mathbb{F}'[x]$. If \mathbb{E}' is a splitting field of $\phi(f(x))$, then there is an isomorphism from \mathbb{E} to \mathbb{E}' agree with ϕ on \mathbb{F} .

Proof. Step 1. Let a be a zero of an irreducible factor p(x) of f(x) in \mathbb{E} , and let b be a zero of $\phi(p(x))$ in \mathbb{E}' . Extend $\phi : \mathbb{F}(a) \to \mathbb{F}'(b)$ using the map sending $h(x) + \langle p(x) \rangle \in \mathbb{F}[x]/\langle p(x) \rangle$ to $\phi(h(x)) + \langle \phi(p(x)) \rangle$.

Step 2. Use induction on the degree of f(x). If f(x) has degree 1, then $\mathbb{F} = \mathbb{E}$ and $\mathbb{F}' = \mathbb{E}'$. The result is true. Assume that f(x) has degree n > 1. Now, write f(x) = (x - a)g(x) and $\phi(f(x)) = (x - b)\phi(g(x))$. Use induction to finish the proof.

Corollary Let $f(x) \in \mathbb{F}[x]$. Any two splitting fields of f(x) are isomorphic.

Example The splitting field of $x^n - a \in \mathbb{Q}[x]$ equals $\mathbb{Q}(a^{1/n}, \exp(i2\pi/n))$.

イロト イヨト イヨト イヨト 三日

Zeros of an irreducible polynomials

Definition The derivative of $f(x) = a_n x^n + \dots + a_0$ is $f'(x) = na_n x^{n-1} + \dots + a_1$.

Lemma Let $f(x), g(x) \in \mathbb{F}[x]$ and $a \in \mathbb{F}$. Then

$$(f(x) + g(x))' = f'(x) + g'(x), \qquad (af(x))' = af'(x),$$
$$(f(x)g(x))' = f'(x)g(x) + f(x)g'(x).$$

Theorem 20.5 A polynomial $f(x) \in \mathbb{F}[x]$ has a multiple zero in some extension field if and only if f(x) and f'(x) have a common factor of positive degree in $\mathbb{F}[x]$.

Proof. If $f(x) = (x-a)^2 g(x) \in \mathbb{E}[x]$, then $f'(x) = \dots$ so that f'(x) and f'(x) have common factor in \mathbb{E} .

If f(x) and f'(x) have no common factor in $\mathbb{F}[x]$, i.e., they are relatively prime, then there is $g(x), h(x) \in \mathbb{F}[x]$ such that g(x)f(x) + h(x)f'(x) = 1 so that (x - a) is a factor of $1 \in \mathbb{E}[x]$.

Conversely, if f(x) and f'(x) have a common factor (x - a), then f(x) = (x - a)g(x) and f'(x) = g(x) + (x - a)g'(x) so that g(x) = (x - a)h(x). Hence, $f(x) = (x - a)^2h(x)$ in $\mathbb{E}[x]$.

Theorem 20.6 Let $f(x) \in \mathbb{F}[x]$ be irreducible. If \mathbb{F} has characteristic 0, then f(x) has no multiple zeros. In case \mathbb{F} has characteristic p, f(x) has a multiple zero if and only if $f(x) = g(x^p)$ for some $g(x) \in \mathbb{F}[x]$.

Proof. If f(x) has a multiple zero, then f(x) and f'(x) have common factor g(x) of degree at least 1 in $\mathbb{F}[x]$. Then g(x)|f(x) implies that g(x) = uf(x). Now, g(x)|f'(x), we see that f'(x) = 0.

Now, f'(x) = 0 means $ka_k = 0$ for all k = 1, ..., n, if $f(x) = a_0 + \cdots + a_n x^n$. If Char $\mathbb{F} = 0$, then ...

If $\operatorname{Char} \mathbb{F} = p$, then ...

イロン 不同 とうほどう ほどう

Structure of polynomials in their splitting fields

A field \mathbb{F} is perfect if \mathbb{F} has characteristic 0 or characteristic p such that $\mathbb{F}^p = \{a^p : a \in \mathbb{F}\} = \mathbb{F}.$

Theorem 20.7 Every finite field is perfect.

Proof. Suppose $\mathbb F$ has characteristic p. The map $x\mapsto x^p$ is a field isomorphism.

Theorem 20.8 If $f(x) \in \mathbb{F}[x]$, where \mathbb{F} is perfect, then f(x) has no multiple roots.

proof. If $\operatorname{Char} \mathbb{F} = 0$, we are done. If $\operatorname{Char} \mathbb{F} = p$, then $f(x) = \sum a_k (x^p)^k = (\sum a_k x^k)^p$, a contradiction.

Theorem 20.9 The zeros of an irreducible polynomial $f(x) \in \mathbb{F}[x]$ have the same multiplicity. Thus, the polynomial has a factorization $a_n(x-a_1)^n(x-a_2)^n \cdots (x-a_t)^n$ with a_1, \ldots, a_t in the extension field, and $a_n \in \mathbb{F}$.

Proof. Suppose $f(x) = (x - a)^m g(x) \in \mathbb{E}[x]$. There is a field isomorphism $\phi : \mathbb{E} \to \mathbb{E}$ leaving \mathbb{F} invariant and sending a to b.

Thus,

$$\phi(f(x)) = \phi((x-a)^m)\phi(g(x)) = (x-b)^m \phi(g(x)) \in \mathbb{E}[x].$$

An example

Let $\mathbb{F} = \mathbb{Z}_2(t)$ be

 $\left\{\frac{f(t)}{g(t)}: f(t), g(t) \in \mathbb{Z}_2[t], g(t) \neq 0, f(t), g(t) \text{ have no common factor } \right\},$

 $\begin{array}{l} \text{the field of quotients of } \mathbb{Z}_2[t]. \text{ Note that } \frac{f_1(t)}{g_1(t)} = \frac{f_2(t)}{g_2(t)} & \text{if } f_1(t)g_2(t) = f_2(t)g_1(t)]; \\ \frac{f_1(t)}{g_1(t)} + \frac{f_2(t)}{g_2(t)} = \frac{f_1(t)g_2(t) + f_2(t)g_1(t)}{g_1(t)g_2(t)} = \frac{f_3(t)}{g_3(t)}, \text{ and } \frac{f_1(t)}{g_1(t)} \frac{f_2(t)}{g_2(t)} = \frac{f_1(t)f_2(t)}{g_1(t)g_2(t)} = \frac{f_3(t)}{g_3(t)}. \end{array} \end{array}$

Note also that $\mathbb F$ is not a perfect field.

Claim: $f(x) = x^2 - t \in \mathbb{F}[x]$.

We need to show that f(x) has no zero in \mathbb{F} .

It suffices to show that f(x) has no zero in \mathbb{F} , i.e., $(h(t)/g(t))^2 \neq t$.

If $h(t)^2 = tg(t)^2$, then $h(t^2) = tg(t^2)$, a contradiction.

(4回) (4回) (4回)