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Extension fields

Definition An extension field E of a given field F is a field such that the
operations of F are those of E restricted to F.

Theorem 20.1 Let f(x) ∈ F[x] be a nonconstant polynomial. Then there is an
extension field E in which f(x) has a zero.

Proof. May assume that f(x) is irreducible; construct E = F[x]/〈f(x)〉.

Example Let f(x) = 2x+ 1 ∈ Z4[x]. Then f(x) does not have zero in any
ring R containing Z4 as a subring.

Proof. If β ∈ R is a zero, then 0 = 2β + 1 so that 0 = 2(2β + 1) = 4β + 2,
contradiction.
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Splitting fields

Definition Let F has an extension field, and a1, . . . , an ∈ E. Then
F(a1, . . . , an) is the intersection all subfields of E containing F ∪ {a1, . . . , an}.

Definition Let E be an extension field of F, and f(x) ∈ F[x] has degree n ≥ 1.
We say that f(x) splits in E if there are a, a1, . . . , an such that

f(x) = a(x− a1) · · · (x− an).

We call E a splitting field for f(x) if E = F(a1, . . . , an).

Theorem 20.2 Let F be a field and let f(x) ∈ F[x] be non-constant. Then
there is a splitting field of f(x).

Proof. Induct on deg(f(x)) = n. If n = 1, then E = F. For larger n, let g(x)
be a irreducible factor of f(x), then E = F[x]/〈g(x)〉 contains a zero a1 of
g(x). Then f(x) = (x− a1)h(x) ∈ E[x]. By induction assumption, there is a
splitting field K of E. One can then find a splitting field K of f(x).
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Example Consider f(x) = x4 − x2 − 2 = (x2 − 2)(x2 + 1) ∈ Q[x]. Then the
splitting field equals

Q(
√

2, i) = {(a+ bi) + (c+ di)
√

2 : a, b, c, d ∈ Q}.

Theorem 20.3 Let a be a zero of the irreducible polynomial p(x) ∈ F[x]. Then
F(a) is isomorphic to F(x)/〈p(x)〉. If p(x) has degree n, then F(a) is a vector
space over F with a basis {1, a, a2 · · · , an−1}.
If b is another zero of the irreducible polynomial, then F(a) and F(b) are
isomporphic.

Proof. Define φ : F[x]→ F(a) by φ(f(x)) = f(a). Then Ker(φ) = 〈p(x)〉.
By the isomorphism theorem, F[x]/Ker(φ) ∼ F(a). ...

Corollary Suppose f(x) is irreducible in F[x] with zeros in extension fields E
and E′, respectively. Then F (a) and F (b) are isomorphic.
Proof. They are isomorphic to F[x]/〈f(x)〉.
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Uniqueness of splitting field

Theorem 20.4 Suppose f(x) ∈ F[x] with a splitting field E. Let φ : F→ F′ be
a field isomorphism. Then φ(f(x)) is irreducible in F′[x]. If E′ is a splitting
field of φ(f(x)), then there is an isomorphism from E to E′ agree with φ on F.

Proof. Step 1. Let a be a zero of an irreducible factor p(x) of f(x) in E,
and let b be a zero of φ(p(x)) in E′. Extend φ : F(a)→ F′(b) using the map
sending h(x) + 〈p(x)〉 ∈ F[x]/〈p(x)〉 to φ(h(x)) + 〈φ(p(x))〉.

Step 2. Use induction on the degree of f(x). If f(x) has degree 1, then
F = E and F′ = E′. The result is true.
Assume that f(x) has degree n > 1. Now, write f(x) = (x− a)g(x) and
φ(f(x)) = (x− b)φ(g(x)). Use induction to finish the proof.

Corollary Let f(x) ∈ F[x]. Any two splitting fields of f(x) are isomorphic.

Example The splitting field of xn − a ∈ Q[x] equals Q(a1/n, exp(i2π/n)).
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Zeros of an irreducible polynomials
Definition The derivative of f(x) = anx

n + · · ·+ a0 is
f ′(x) = nanx

n−1 + · · ·+ a1.

Lemma Let f(x), g(x) ∈ F[x] and a ∈ F. Then

(f(x) + g(x))′ = f ′(x) + g′(x), (af(x))′ = af ′(x),

(f(x)g(x))′ = f ′(x)g(x) + f(x)g′(x).

Theorem 20.5 A polynomial f(x) ∈ F[x] has a multiple zero in some extension
field if and only if f(x) and f ′(x) have a common factor of positive degree in
F[x].

Proof. If f(x) = (x− a)2g(x) ∈ E[x], then f ′(x) = ... so that f ′(x) and f ′(x)
have common factor in E.

If f(x) and f ′(x) have no common factor in F[x], i.e., they are relatively
prime, then there is g(x), h(x) ∈ F[x] such that g(x)f(x) + h(x)f ′(x) = 1 so
that (x− a) is a factor of 1 ∈ E[x].

Conversely, if f(x) and f ′(x) have a common factor (x− a), then
f(x) = (x− a)g(x) and f ′(x) = g(x) + (x− a)g′(x) so that
g(x) = (x− a)h(x). Hence, f(x) = (x− a)2h(x) in E[x].
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Theorem 20.6 Let f(x) ∈ F[x] be irreducible. If F has characteristic 0, then
f(x) has no multiple zeros. In case F has characteristic p, f(x) has a multiple
zero if and only if f(x) = g(xp) for some g(x) ∈ F[x].

Proof. If f(x) has a multiple zero, then f(x) and f ′(x) have common factor
g(x) of degree at least 1 in F[x]. Then g(x)|f(x) implies that g(x) = uf(x).
Now, g(x)|f ′(x), we see that f ′(x) = 0.

Now, f ′(x) = 0 means kak = 0 for all k = 1, . . . , n, if f(x) = a0 + · · ·+anx
n.

If CharF = 0, then ...

If CharF = p, then ...
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Structure of polynomials in their splitting fields
A field F is perfect if F has characteristic 0 or characteristic p such that
Fp = {ap : a ∈ F} = F.
Theorem 20.7 Every finite field is perfect.
Proof. Suppose F has characteristic p. The map x 7→ xp is a field
isomorphism.
Theorem 20.8 If f(x) ∈ F[x], where F is perfect, then f(x) has no multiple
roots.
proof. If CharF = 0, we are done.
If CharF = p, then f(x) =

∑
ak(xp)k = (

∑
akx

k)p, a contradiction.
Theorem 20.9 The zeros of an irreducible polynomial f(x) ∈ F[x] have the
same multiplicity. Thus, the polynomial has a factorization
an(x− a1)n(x− a2)n · · · (x− at)n with a1, . . . , at in the extension field, and
an ∈ F.
Proof. Suppose f(x) = (x− a)mg(x) ∈ E[x].
There is a field isomorphism φ : E→ E leaving F invariant and sending a to
b.
Thus,

φ(f(x)) = φ((x− a)m)φ(g(x)) = (x− b)mφ(g(x)) ∈ E[x].
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An example

Let F = Z2(t) be{
f(t)
g(t) : f(t), g(t) ∈ Z2[t], g(t) 6= 0, f(t), g(t) have no common factor

}
,

the field of quotients of Z2[t]. Note that f1(t)
g1(t) = f2(t)

g2(t) if f1(t)g2(t) = f2(t)g1(t)];
f1(t)
g1(t) + f2(t)

g2(t) = f1(t)g2(t)+f2(t)g1(t)
g1(t)g2(t) = f3(t)

g3(t) , and f1(t)
g1(t)

f2(t)
g2(t) = f1(t)f2(t)

g1(t)g2(t) = f3(t)
g3(t) .

Note also that F is not a perfect field.

Claim: f(x) = x2 − t ∈ F[x].

We need to show that f(x) has no zero in F.

It suffices to show that f(x) has no zero in F, i.e., (h(t)/g(t))2 6= t.

If h(t)2 = tg(t)2, then h(t2) = tg(t2), a contradiction.
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