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Extension fields

Definition An extension field E of a given field I is a field such that the
operations of I are those of E restricted to F.

Theorem 20.1 Let f(z) € F[z] be a nonconstant polynomial. Then there is an
extension field E in which f(z) has a zero.

Proof. May assume that f(z) is irreducible; construct E = Fz]/(f(z)). O

Example Let f(xz) = 2z + 1 € Z4[z]. Then f(z) does not have zero in any
ring R containing Z4 as a subring.

Proof. If 8 € R is a zero, then 0 = 23 + 1 so that 0 = 2(28 + 1) =48 + 2,
contradiction.
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Splitting fields

Definition Let I has an extension field, and a1,...,a, € E. Then
F(a1,...,an) is the intersection all subfields of E containing F U {aa,...,an}.

Definition Let E be an extension field of F, and f(z) € F[z] has degree n > 1.
We say that f(z) splits in E if there are a,a1,...,an such that

f(@) = a(e —a1) - (& — an).
We call E a splitting field for f(z) if E = F(ai,...,an).

Theorem 20.2 Let F be a field and let f(x) € F[z] be non-constant. Then
there is a splitting field of f(x).

Proof. Induct on deg(f(z)) = n. If n =1, then E = F. For larger n, let g(z)
be a irreducible factor of f(z), then E = F[x]/{g(x)) contains a zero a1 of
g(z). Then f(z) = (z — a1)h(z) € E[z]. By induction assumption, there is a
splitting field K of E. One can then find a splitting field K of f(z).
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Example Consider f(z) = z* — 2% — 2 = (2% — 2)(z? + 1) € Q[z]. Then the
splitting field equals

Q(V2,i) = {(a+ bi) + (c+ di)V2 : a,b,¢,d € Q}.

Theorem 20.3 Let a be a zero of the irreducible polynomial p(x) € Flz]. Then
F(a) is isomorphic to F(x)/(p(x)). If p(x) has degree n, then F(a) is a vector
space over F with a basis {1,a,a®--- ,a""'}.

If b is another zero of the irreducible polynomial, then F(a) and F(b) are
isomporphic.

Proof. Define ¢ : F[z] — F(a) by ¢(f(x)) = f(a). Then Ker(¢) = (p(z)).
By the isomorphism theorem, F[z]/Ker(¢) ~ F(a). ... O

Corollary Suppose f(z) is irreducible in F[z] with zeros in extension fields E
and E', respectively. Then F(a) and F(b) are isomorphic.
Proof. They are isomorphic to F[z]/(f(x)). O
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Uniqueness of splitting field

Theorem 20.4 Suppose f(z) € F[z] with a splitting field E. Let ¢ : F — F’ be
a field isomorphism. Then ¢(f(z)) is irreducible in F'[z]. If E' is a splitting
field of ¢(f(x)), then there is an isomorphism from E to E’ agree with ¢ on F.

Proof. Step 1. Let a be a zero of an irreducible factor p(z) of f(z) in E,
and let b be a zero of ¢(p(z)) in E'. Extend ¢ : F(a) — F'(b) using the map

sending h(z) + (p(x)) € Flz]/(p(x)) to ¢(h(x)) + ((p(x))).

Step 2. Use induction on the degree of f(x). If f(z) has degree 1, then
F=FE and F/ = E’. The result is true.

Assume that f(z) has degree n > 1. Now, write f(z) = (z — a)g(z) and
o(f(z)) = (x — b)¢(g(x)). Use induction to finish the proof. O

Corollary Let f(z) € F[z]. Any two splitting fields of f(x) are isomorphic.
Example The splitting field of " — a € Q[z] equals Q(a'/™, exp(i27 /n)).

Chapter 20 Extension fields



Zeros of an irreducible polynomials

Definition The derivative of f(z) = anz™ 4+ -+ + ao is
f(x) =nanz™ " + - +ai.

Lemma Let f(z),g(z) € Flz] and a € F. Then
(f(@) +9(2) = f'(2) +g'(x), (af(x)) = af'(2),
(f(@)g(@))" = f'()g(x) + f(2)g (2).
Theorem 20.5 A polynomial f(z) € Flz] has a multiple zero in some extension

field if and only if f(z) and f’(x) have a common factor of positive degree in
Proof. 1f f(z) = (x — a)?g(x) € E[z], then f’'(z) = ... so that f'(z) and f'(z)
have common factor in E.

If f(x) and f'(z) have no common factor in F[z], i.e., they are relatively
prime, then there is g(z), h(z) € F[z] such that g(z)f(z) + h(z)f'(z) =1 so
that (z — a) is a factor of 1 € E[z].

Conversely, if f(x) and f'(z) have a common factor (z — a), then
£(2) = (= - a)g(x) and f'(x) = g(z) + (& — a)g'(x) so that
g(z) = (z — a)h(zx). Hence, f(z) = (z — a)*h(z) in E[z]. O
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Theorem 20.6 Let f(x) € Flx] be irreducible. If F has characteristic 0, then
f(x) has no multiple zeros. In case F has characteristic p, f(x) has a multiple
zero if and only if f(z) = g(a®) for some g(z) € F[z].

Proof. If f(x) has a multiple zero, then f(x) and f’(x) have common factor
g(z) of degree at least 1 in F[z]. Then g(x)|f(x) implies that g(z) = uf(z).
Now, g(x)|f'(z), we see that f'(z) = 0.

Now, f'(z) = 0 means kar =0 forallk =1,...,n,if f(z) = ao+ - +a,z".
If CharF = 0, then ...
If CharF = p, then ...
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Structure of polynomials in their splitting fields

A field F is perfect if F has characteristic 0 or characteristic p such that

FP = {a? :a € F} =F.

Theorem 20.7 Every finite field is perfect.

Proof. Suppose F has characteristic p. The map = +— z? is a field
isomorphism. O
Theorem 20.8 If f(xz) € F[z], where F is perfect, then f(z) has no multiple
roots.

proof. If CharF = 0, we are done.

If CharF = p, then f(z) = > ar(z®)* = (3 arz®)?, a contradiction. O

Theorem 20.9 The zeros of an irreducible polynomial f(z) € F[z] have the
same multiplicity. Thus, the polynomial has a factorization

an(x —a1)™(x —a2)™ - (x — a)™ with a1, ...,a: in the extension field, and
an, € F.

Proof. Suppose f(z) = (z —a)"g(z) € E[z].

There is a field isomorphism ¢ : E — E leaving F invariant and sending a to
b.

Thus,

o(f (@) = ¢((z — a)")d(g(z)) = (z — b)"d(g(z)) € E[z].



An example

Let F = Z(t) be

{f(t) 2 f(t), g(t) € Zalt], g(t) # 0, f(¢), g(t) have no common factor } ,

g(t)
the field of quotients of Zz|t]. Note thar £143 — L2 Ef; i f1()g2(t) = fa(t)g1(t)];
£ | F2(0) _ A Wea()+faWer () _ f3() Ly A1) Fatt) _ f1()f2(t) _ fa(t)
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Note also that I is not a perfect field.

Claim: f(z) = 2® — t € F[z].

We need to show that f(x) has no zero in F.

It suffices to show that f(z) has no zero in F, i.e., (h(t)/g(t))?

If h(t)? = tg(t)?, then h(t?) = tg(t*), a contradiction. O
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