Chapter 20 Extension fields

Extension fields

Definition An extension field \mathbb{E} of a given field \mathbb{F} is a field such that the operations of \mathbb{F} are those of \mathbb{E} restricted to \mathbb{F}.

Theorem 20.1 Let $f(x) \in \mathbb{F}[x]$ be a nonconstant polynomial. Then there is an extension field \mathbb{E} in which $f(x)$ has a zero.

Proof. May assume that $f(x)$ is irreducible; construct $\mathbb{E}=\mathbb{F}[x] /\langle f(x)\rangle$.
Example Let $f(x)=2 x+1 \in \mathbb{Z}_{4}[x]$. Then $f(x)$ does not have zero in any ring R containing \mathbb{Z}_{4} as a subring.

Proof. If $\beta \in R$ is a zero, then $0=2 \beta+1$ so that $0=2(2 \beta+1)=4 \beta+2$, contradiction.

Definition Let \mathbb{F} has an extension field, and $a_{1}, \ldots, a_{n} \in \mathbb{E}$. Then $\mathbb{F}\left(a_{1}, \ldots, a_{n}\right)$ is the intersection all subfields of \mathbb{E} containing $\mathbb{F} \cup\left\{a_{1}, \ldots, a_{n}\right\}$.

Definition Let \mathbb{E} be an extension field of \mathbb{F}, and $f(x) \in \mathbb{F}[x]$ has degree $n \geq 1$. We say that $f(x)$ splits in \mathbb{E} if there are a, a_{1}, \ldots, a_{n} such that

$$
f(x)=a\left(x-a_{1}\right) \cdots\left(x-a_{n}\right)
$$

We call \mathbb{E} a splitting field for $f(x)$ if $\mathbb{E}=\mathbb{F}\left(a_{1}, \ldots, a_{n}\right)$.
Theorem 20.2 Let \mathbb{F} be a field and let $f(x) \in \mathbb{F}[x]$ be non-constant. Then there is a splitting field of $f(x)$.

Proof. Induct on $\operatorname{deg}(f(x))=n$. If $n=1$, then $\mathbb{E}=\mathbb{F}$. For larger n, let $g(x)$ be a irreducible factor of $f(x)$, then $\mathbb{E}=\mathbb{F}[x] /\langle g(x)\rangle$ contains a zero a_{1} of $g(x)$. Then $f(x)=\left(x-a_{1}\right) h(x) \in \mathbb{E}[x]$. By induction assumption, there is a splitting field K of \mathbb{E}. One can then find a splitting field K of $f(x)$.

Example Consider $f(x)=x^{4}-x^{2}-2=\left(x^{2}-2\right)\left(x^{2}+1\right) \in \mathbb{Q}[x]$. Then the splitting field equals

$$
\mathbb{Q}(\sqrt{2}, i)=\{(a+b i)+(c+d i) \sqrt{2}: a, b, c, d \in \mathbb{Q}\} .
$$

Theorem 20.3 Let a be a zero of the irreducible polynomial $p(x) \in \mathbb{F}[x]$. Then $\mathbb{F}(a)$ is isomorphic to $\mathbb{F}(x) /\langle p(x)\rangle$. If $p(x)$ has degree n, then $\mathbb{F}(a)$ is a vector space over \mathbb{F} with a basis $\left\{1, a, a^{2} \cdots, a^{n-1}\right\}$.
If b is another zero of the irreducible polynomial, then $\mathbb{F}(a)$ and $\mathbb{F}(b)$ are isomporphic.

Proof. Define $\phi: \mathbb{F}[x] \rightarrow \mathbb{F}(a)$ by $\phi(f(x))=f(a)$. Then $\operatorname{Ker}(\phi)=\langle p(x)\rangle$. By the isomorphism theorem, $\mathbb{F}[x] / \operatorname{Ker}(\phi) \sim \mathbb{F}(a)$. ...

Corollary Suppose $f(x)$ is irreducible in $\mathbb{F}[x]$ with zeros in extension fields \mathbb{E} and \mathbb{E}^{\prime}, respectively. Then $F(a)$ and $F(b)$ are isomorphic.
Proof. They are isomorphic to $\mathbb{F}[x] /\langle f(x)\rangle$.

Uniqueness of splitting field

Theorem 20.4 Suppose $f(x) \in \mathbb{F}[x]$ with a splitting field \mathbb{E}. Let $\phi: \mathbb{F} \rightarrow \mathbb{F}^{\prime}$ be a field isomorphism. Then $\phi(f(x))$ is irreducible in $\mathbb{F}^{\prime}[x]$. If \mathbb{E}^{\prime} is a splitting field of $\phi(f(x))$, then there is an isomorphism from \mathbb{E} to \mathbb{E}^{\prime} agree with ϕ on \mathbb{F}.

Proof. Step 1. Let a be a zero of an irreducible factor $p(x)$ of $f(x)$ in \mathbb{E}, and let b be a zero of $\phi(p(x))$ in \mathbb{E}^{\prime}. Extend $\phi: \mathbb{F}(a) \rightarrow \mathbb{F}^{\prime}(b)$ using the map sending $h(x)+\langle p(x)\rangle \in \mathbb{F}[x] /\langle p(x)\rangle$ to $\phi(h(x))+\langle\phi(p(x))\rangle$.

Step 2. Use induction on the degree of $f(x)$. If $f(x)$ has degree 1 , then $\mathbb{F}=\mathbb{E}$ and $\mathbb{F}^{\prime}=\mathbb{E}^{\prime}$. The result is true.
Assume that $f(x)$ has degree $n>1$. Now, write $f(x)=(x-a) g(x)$ and $\phi(f(x))=(x-b) \phi(g(x))$. Use induction to finish the proof.

Corollary Let $f(x) \in \mathbb{F}[x]$. Any two splitting fields of $f(x)$ are isomorphic.
Example The splitting field of $x^{n}-a \in \mathbb{Q}[x]$ equals $\mathbb{Q}\left(a^{1 / n}, \exp (i 2 \pi / n)\right)$.

Zeros of an irreducible polynomials

Definition The derivative of $f(x)=a_{n} x^{n}+\cdots+a_{0}$ is $f^{\prime}(x)=n a_{n} x^{n-1}+\cdots+a_{1}$.

Lemma Let $f(x), g(x) \in \mathbb{F}[x]$ and $a \in \mathbb{F}$. Then

$$
\begin{gathered}
(f(x)+g(x))^{\prime}=f^{\prime}(x)+g^{\prime}(x), \quad(a f(x))^{\prime}=a f^{\prime}(x), \\
(f(x) g(x))^{\prime}=f^{\prime}(x) g(x)+f(x) g^{\prime}(x)
\end{gathered}
$$

Theorem 20.5 A polynomial $f(x) \in \mathbb{F}[x]$ has a multiple zero in some extension field if and only if $f(x)$ and $f^{\prime}(x)$ have a common factor of positive degree in $\mathbb{F}[x]$.

Proof. If $f(x)=(x-a)^{2} g(x) \in \mathbb{E}[x]$, then $f^{\prime}(x)=\ldots$ so that $f^{\prime}(x)$ and $f^{\prime}(x)$ have common factor in \mathbb{E}.

If $f(x)$ and $f^{\prime}(x)$ have no common factor in $\mathbb{F}[x]$, i.e., they are relatively prime, then there is $g(x), h(x) \in \mathbb{F}[x]$ such that $g(x) f(x)+h(x) f^{\prime}(x)=1$ so that $(x-a)$ is a factor of $1 \in \mathbb{E}[x]$.

Conversely, if $f(x)$ and $f^{\prime}(x)$ have a common factor $(x-a)$, then $f(x)=(x-a) g(x)$ and $f^{\prime}(x)=g(x)+(x-a) g^{\prime}(x)$ so that $g(x)=(x-a) h(x)$. Hence, $f(x)=(x-a)^{2} h(x)$ in $\mathbb{E}[x]$.

Theorem 20.6 Let $f(x) \in \mathbb{F}[x]$ be irreducible. If \mathbb{F} has characteristic $\mathbf{0}$, then $f(x)$ has no multiple zeros. In case \mathbb{F} has characteristic $p, f(x)$ has a multiple zero if and only if $f(x)=g\left(x^{p}\right)$ for some $g(x) \in \mathbb{F}[x]$.
Proof. If $f(x)$ has a multiple zero, then $f(x)$ and $f^{\prime}(x)$ have common factor $g(x)$ of degree at least 1 in $\mathbb{F}[x]$. Then $g(x) \mid f(x)$ implies that $g(x)=u f(x)$. Now, $g(x) \mid f^{\prime}(x)$, we see that $f^{\prime}(x)=0$.
Now, $f^{\prime}(x)=0$ means $k a_{k}=0$ for all $k=1, \ldots, n$, if $f(x)=a_{0}+\cdots+a_{n} x^{n}$.
If CharF $=0$, then \ldots
If $\operatorname{CharF}=p$, then \ldots

Structure of polynomials in their splitting fields

A field \mathbb{F} is perfect if \mathbb{F} has characteristic 0 or characteristic p such that $\mathbb{F}^{p}=\left\{a^{p}: a \in \mathbb{F}\right\}=\mathbb{F}$.

Theorem 20.7 Every finite field is perfect.
Proof. Suppose \mathbb{F} has characteristic p. The map $x \mapsto x^{p}$ is a field isomorphism.

Theorem 20.8 If $f(x) \in \mathbb{F}[x]$, where \mathbb{F} is perfect, then $f(x)$ has no multiple roots.
proof. If Char $\mathbb{F}=0$, we are done.
If CharF $=p$, then $f(x)=\sum a_{k}\left(x^{p}\right)^{k}=\left(\sum a_{k} x^{k}\right)^{p}$, a contradiction.
Theorem 20.9 The zeros of an irreducible polynomial $f(x) \in \mathbb{F}[x]$ have the same multiplicity. Thus, the polynomial has a factorization $a_{n}\left(x-a_{1}\right)^{n}\left(x-a_{2}\right)^{n} \cdots\left(x-a_{t}\right)^{n}$ with a_{1}, \ldots, a_{t} in the extension field, and $a_{n} \in \mathbb{F}$.

Proof. Suppose $f(x)=(x-a)^{m} g(x) \in \mathbb{E}[x]$.
There is a field isomorphism $\phi: \mathbb{E} \rightarrow \mathbb{E}$ leaving \mathbb{F} invariant and sending a to b.
Thus,

$$
\phi(f(x))=\phi\left((x-a)^{m}\right) \phi(g(x))=(x-b)^{m} \phi(g(x)) \in \mathbb{E}[x] .
$$

An example

Let $\mathbb{F}=\mathbb{Z}_{2}(t)$ be

$$
\left\{\frac{f(t)}{g(t)}: f(t), g(t) \in \mathbb{Z}_{2}[t], g(t) \neq 0, f(t), g(t) \text { have no common factor }\right\}
$$

the field of quotients of $\mathbb{Z}_{2}[t]$. Note that $\frac{f_{1}(t)}{g_{1}(t)}=\frac{f_{2}(t)}{g_{2}(t)} \quad$ if $\left.f_{1}(t) g_{2}(t)=f_{2}(t) g_{1}(t)\right]$;
$\frac{f_{1}(t)}{g_{1}(t)}+\frac{f_{2}(t)}{g_{2}(t)}=\frac{f_{1}(t) g_{2}(t)+f_{2}(t) g_{1}(t)}{g_{1}(t) g_{2}(t)}=\frac{f_{3}(t)}{g_{3}(t)}$, and $\frac{f_{1}(t)}{g_{1}(t)} \frac{f_{2}(t)}{g_{2}(t)}=\frac{f_{1}(t) f_{2}(t)}{g_{1}(t) g_{2}(t)}=\frac{f_{3}(t)}{g_{3}(t)}$.
Note also that \mathbb{F} is not a perfect field.
Claim: $f(x)=x^{2}-t \in \mathbb{F}[x]$.
We need to show that $f(x)$ has no zero in \mathbb{F}.
It suffices to show that $f(x)$ has no zero in \mathbb{F}, i.e., $(h(t) / g(t))^{2} \neq t$.
If $h(t)^{2}=\operatorname{tg}(t)^{2}$, then $h\left(t^{2}\right)=\operatorname{tg}\left(t^{2}\right)$, a contradiction.

