Chapter 21 Algebra Extensions

Different Extensions

Definition Let \mathbb{E} be an field extension of \mathbb{F}.
An element $a \in \mathbb{E}$ is algebraic if it is the zero of some $f(x) \in \mathbb{F}[x]$.
Otherwise, it is transcendental over \mathbb{F}.
We say that \mathbb{E} is an algebraic extension of \mathbb{F} if every $a \in \mathbb{E}$ is algebraic over \mathbb{F}.
If \mathbb{E} is not an algebraic extension of \mathbb{F}, it is a transcendental extension.
If $\mathbb{E}=\mathbb{F}(a)$, then \mathbb{E} is a simple extension. Here a can be algebraic or transcendental.

Basic results

Theorem 21.1/21.2/21.3 Let \mathbb{E} is an extension of \mathbb{F}, and $a \in \mathbb{E}$.

- If a is transcendental over \mathbb{F}, then

$$
\mathbb{F}(a) \sim \mathbb{F}(x)=\{f(x) / g(x): f(x), g(x) \in \mathbb{F}[x], g(x) \neq 0\}
$$

- If a is algebraic over \mathbb{F}, then there is a unique monic irreducible polynomial $p(x) \in \mathbb{F}[x]$ with minimum degree such that $p(a)=0$ and $F(a)$ is isomorphic to $\mathbb{F}[x] /\langle p(x)\rangle$.
The polynomial $p(x)$ is called the minimal polynomial of a, and it is a factor of any polynomial $f(x) \in \mathbb{F}[x]$ such that $f(a)=0$.

Proof. Define $\phi(f(x))=f(a)$. Then $\mathbb{F}[x] \sim \mathbb{F}(a)$.
Let $p(x) \in \mathbb{F}[x]$ be a monic polynomial of minimum degree satisfying $f(a)=0$.
For any $f(x) \in \mathbb{F}[x]$ such that $f(a)=0$, we have $f(x) \in\langle p(x)\rangle$. Else, ... So, if $f(x)$ is another monic polynomial of minimum degree satisfying $f(a)=0$, then $f(x)=p(x)$.
By Theorem 20.3, $\mathbb{F}[x] /\langle p(x)\rangle \sim \mathbb{F}(a)$.

Extension fields and vector spaces

Let \mathbb{E} be an extension of \mathbb{F}, and let $[\mathbb{E}: \mathbb{F}]$ be the degree of the extension, i.e., the dimension of the vector space \mathbb{E} over \mathbb{F}. Then \mathbb{E} is a finite or infinite extension of \mathbb{F} depending on $[\mathbb{E}: \mathbb{F}]$ is finite or infinite.

Theorem 21.4 If \mathbb{E} is a finite extension of \mathbb{F}, then it is an algebraic extension of \mathbb{F}.

Proof. Let $a \in \mathbb{E} \backslash \mathbb{F}$, and $\left\{1, a, a^{2}, \ldots, a^{r}\right\}$ be a maximal linearly independent set. Then ...

Theorem 21.5 Let \mathbb{K} be a finite extension of \mathbb{E}, which is a finite extension of \mathbb{F}. Then $[\mathbb{K}: \mathbb{F}]=[\mathbb{K}: \mathbb{E}][\mathbb{E}: \mathbb{F}]$.

Proof. Use the bases $\left\{x_{1}, \ldots, x_{m}\right\}$ and $\left\{y_{1}, \ldots, y_{n}\right\} \ldots$

Theorem 21.6 Let a, b are algebraic over a perfect field \mathbb{F} such that $[\mathbb{F}(a): \mathbb{F}]=m$ and $[\mathbb{F}(b): \mathbb{F}]=n$. If $|F|>\min \{m n-n, m n-m\}$, then there is $c \in \mathbb{F}(a, b)$ such that $\mathbb{F}(a, b)=\mathbb{F}(c)$.

Proof. Let $p(x)=\left(x-a_{1}\right) \cdots\left(x-a_{m}\right), q(x)=\left(x-b_{1}\right) \cdots\left(x-b_{n}\right) \in \mathbb{F}[x]$ be the monic minimal polynomials of $a=a_{1}, b=b_{1}$ with distinct zeros (as \mathbb{F} is perfect).
Without lost of generality assume $m n-n \leq m n-m$. By the assumption on $|\mathbb{F}|$, there d be such that $d \neq\left(a_{i}-a\right) /\left(b-b_{j}\right)$ for all $i \geq 1$ and $j>1$, $c=a+d b$.
Then $\mathbb{F}(c) \subseteq \mathbb{F}(a, b)$.
For the reverse inclusion, consider $q(x) \in \mathbb{F}[x] \subseteq \mathbb{F}[c)[x]$ and $r(x)=p(c-d x) \in \mathbb{F}(c)[x]$. Then

$$
q(b)=0 \quad \text { and } \quad r(b)=p(c-d b)=p(a)=0
$$

Then the monic minimal polynomial $s(x) \in \mathbb{F}(c)[x]$ of b divides $q(x)$ and $r(x)$. Thus, $s(x)$ should be the product of some linear factors of $q(x)$. But

$$
r\left(b_{j}\right)=p\left(c-d b_{j}\right)=p\left(a+d\left(b-b_{j}\right)\right) \neq 0
$$

as $a+d\left(b-b_{j}\right) \neq a_{i}$ for all i.
So, $s(x)=(x-b)$, i.e., $b \in \mathbb{F}(c)$ and so is $a=c-d b$.

Theorem 21.7 If \mathbb{K} is an algebraic extension of \mathbb{E}, and \mathbb{E} is an algebraic extension of \mathbb{F}, then \mathbb{K} is an algebraic extension of \mathbb{F}.

Proof. Let $a \in \mathbb{K}$. Suppose $p(x)=b_{0}+b_{1} x+\cdots+b_{n-1} x^{n-1}+x^{n} \in \mathbb{E}[x]$ is the monic minimal polynomial of a. Then $p(x) \in \mathbb{F}\left(b_{0}, \ldots, b_{n-1}\right)[x]$ and $a \in \mathbb{F}\left(b_{0}, \ldots, b_{n-1}, a\right)$ is a finite extension, and is therefore algebraic.

Corollary Let \mathbb{E} is an extension of \mathbb{F}. Then the set of elements of \mathbb{E} is algebraic over \mathbb{F} is a subfield of \mathbb{E}.

Proof. Need only show that if a, b are algebraic over \mathbb{F}, then so are $a+b, a-b, a b$ and also $1 / b$ if b is nonzero.

