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Different Extensions

Definition Let E be an field extension of F.

An element a ∈ E is algebraic if it is the zero of some f(x) ∈ F[x].

Otherwise, it is transcendental over F.

We say that E is an algebraic extension of F if every a ∈ E is algebraic over F.

If E is not an algebraic extension of F, it is a transcendental extension.

If E = F(a), then E is a simple extension. Here a can be algebraic or
transcendental.
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Basic results

Theorem 21.1/21.2/21.3 Let E is an extension of F, and a ∈ E.

If a is transcendental over F, then

F(a) ∼ F(x) = {f(x)/g(x) : f(x), g(x) ∈ F[x], g(x) 6= 0}.

If a is algebraic over F, then there is a unique monic irreducible
polynomial p(x) ∈ F[x] with minimum degree such that p(a) = 0 and
F (a) is isomorphic to F[x]/〈p(x)〉.
The polynomial p(x) is called the minimal polynomial of a, and it is a factor of any polynomial

f(x) ∈ F[x] such that f(a) = 0.

Proof. Define φ(f(x)) = f(a). Then F[x] ∼ F(a).
Let p(x) ∈ F[x] be a monic polynomial of minimum degree satisfying
f(a) = 0.
For any f(x) ∈ F[x] such that f(a) = 0, we have f(x) ∈ 〈p(x)〉. Else, ...
So, if f(x) is another monic polynomial of minimum degree satisfying
f(a) = 0, then f(x) = p(x).
By Theorem 20.3, F[x]/〈p(x)〉 ∼ F(a).
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Extension fields and vector spaces

Let E be an extension of F, and let [E : F] be the degree of the extension, i.e.,
the dimension of the vector space E over F. Then E is a finite or infinite
extension of F depending on [E : F] is finite or infinite.

Theorem 21.4 If E is a finite extension of F, then it is an algebraic extension
of F.

Proof. Let a ∈ E \ F, and {1, a, a2, . . . , ar} be a maximal linearly
independent set. Then ...

Theorem 21.5 Let K be a finite extension of E, which is a finite extension of
F. Then [K : F] = [K : E][E : F].

Proof. Use the bases {x1, . . . , xm} and {y1, . . . , yn} ...
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Theorem 21.6 Let a, b are algebraic over a perfect field F such that
[F(a) : F] = m and [F(b) : F] = n. If |F | > min{mn− n,mn−m}, then there
is c ∈ F(a, b) such that F(a, b) = F(c).

Proof. Let p(x) = (x− a1) · · · (x− am), q(x) = (x− b1) · · · (x− bn) ∈ F[x] be
the monic minimal polynomials of a = a1, b = b1 with distinct zeros (as F is
perfect).
Without lost of generality assume mn− n ≤ mn−m. By the assumption
on |F|, there d be such that d 6= (ai − a)/(b− bj) for all i ≥ 1 and j > 1,
c = a+ db.
Then F(c) ⊆ F(a, b).
For the reverse inclusion, consider q(x) ∈ F[x] ⊆ F[c)[x] and
r(x) = p(c− dx) ∈ F(c)[x]. Then

q(b) = 0 and r(b) = p(c− db) = p(a) = 0.
Then the monic minimal polynomial s(x) ∈ F(c)[x] of b divides q(x) and
r(x). Thus, s(x) should be the product of some linear factors of q(x). But

r(bj) = p(c− dbj) = p(a+ d(b− bj)) 6= 0

as a+ d(b− bj) 6= ai for all i.
So, s(x) = (x− b), i.e., b ∈ F(c) and so is a = c− db.
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Theorem 21.7 If K is an algebraic extension of E, and E is an algebraic
extension of F, then K is an algebraic extension of F.

Proof. Let a ∈ K. Suppose p(x) = b0 + b1x+ · · ·+ bn−1x
n−1 + xn ∈ E[x] is

the monic minimal polynomial of a. Then p(x) ∈ F(b0, . . . , bn−1)[x] and
a ∈ F(b0, . . . , bn−1, a) is a finite extension, and is therefore algebraic.

Corollary Let E is an extension of F. Then the set of elements of E is
algebraic over F is a subfield of E.

Proof. Need only show that if a, b are algebraic over F, then so are
a+ b, a− b, ab and also 1/b if b is nonzero.
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