Chapter 21 Algebra Extensions

Chapter 21 Algebra Extensions

-≣->

Definition Let \mathbb{E} be an field extension of \mathbb{F} .

An element $a \in \mathbb{E}$ is algebraic if it is the zero of some $f(x) \in \mathbb{F}[x]$.

Otherwise, it is transcendental over \mathbb{F} .

We say that \mathbb{E} is an algebraic extension of \mathbb{F} if every $a \in \mathbb{E}$ is algebraic over \mathbb{F} .

If $\mathbb E$ is not an algebraic extension of $\mathbb F,$ it is a transcendental extension.

If $\mathbb{E} = \mathbb{F}(a)$, then \mathbb{E} is a simple extension. Here a can be algebraic or transcendental.

イロト イポト イヨト イヨト

Theorem 21.1/21.2/21.3 Let \mathbb{E} is an extension of \mathbb{F} , and $a \in \mathbb{E}$.

• If a is transcendental over \mathbb{F} , then

 $\mathbb{F}(a)\sim\mathbb{F}(x)=\{f(x)/g(x):f(x),g(x)\in\mathbb{F}[x],g(x)\neq 0\}.$

• If a is algebraic over \mathbb{F} , then there is a unique monic irreducible polynomial $p(x) \in \mathbb{F}[x]$ with minimum degree such that p(a) = 0 and F(a) is isomorphic to $\mathbb{F}[x]/\langle p(x) \rangle$.

The polynomial p(x) is called the minimal polynomial of a, and it is a factor of any polynomial $f(x) \in \mathbb{F}[x]$ such that f(a) = 0.

Proof. Define $\phi(f(x)) = f(a)$. Then $\mathbb{F}[x] \sim \mathbb{F}(a)$. Let $p(x) \in \mathbb{F}[x]$ be a monic polynomial of minimum degree satisfying f(a) = 0. For any $f(x) \in \mathbb{F}[x]$ such that f(a) = 0, we have $f(x) \in \langle p(x) \rangle$. Else, ... So, if f(x) is another monic polynomial of minimum degree satisfying f(a) = 0, then f(x) = p(x). By Theorem 20.3, $\mathbb{F}[x]/\langle p(x) \rangle \sim \mathbb{F}(a)$.

イロン 不同 とうほどう ほうし

Let \mathbb{E} be an extension of \mathbb{F} , and let $[\mathbb{E}:\mathbb{F}]$ be the degree of the extension, i.e., the dimension of the vector space \mathbb{E} over \mathbb{F} . Then \mathbb{E} is a finite or infinite extension of \mathbb{F} depending on $[\mathbb{E}:\mathbb{F}]$ is finite or infinite.

Theorem 21.4 If $\mathbb E$ is a finite extension of $\mathbb F,$ then it is an algebraic extension of $\mathbb F.$

Proof. Let $a \in \mathbb{E} \setminus \mathbb{F}$, and $\{1, a, a^2, \dots, a^r\}$ be a maximal linearly independent set. Then ...

Theorem 21.5 Let \mathbb{K} be a finite extension of \mathbb{E} , which is a finite extension of \mathbb{F} . Then $[\mathbb{K} : \mathbb{F}] = [\mathbb{K} : \mathbb{E}][\mathbb{E} : \mathbb{F}]$.

Proof. Use the bases $\{x_1, \ldots, x_m\}$ and $\{y_1, \ldots, y_n\}$...

イロン 不同 とうほどう ほうし

Theorem 21.6 Let a, b are algebraic over a perfect field \mathbb{F} such that $[\mathbb{F}(a) : \mathbb{F}] = m$ and $[\mathbb{F}(b) : \mathbb{F}] = n$. If $|F| > \min\{mn - n, mn - m\}$, then there is $c \in \mathbb{F}(a, b)$ such that $\mathbb{F}(a, b) = \mathbb{F}(c)$.

Proof. Let $p(x) = (x - a_1) \cdots (x - a_m), q(x) = (x - b_1) \cdots (x - b_n) \in \mathbb{F}[x]$ be the monic minimal polynomials of $a = a_1, b = b_1$ with distinct zeros (as \mathbb{F} is perfect).

Without lost of generality assume $mn - n \leq mn - m$. By the assumption on $|\mathbb{F}|$, there d be such that $d \neq (a_i - a)/(b - b_j)$ for all $i \geq 1$ and j > 1, c = a + db.

Then $\mathbb{F}(c) \subseteq \mathbb{F}(a, b)$.

For the reverse inclusion, consider $q(x) \in \mathbb{F}[x] \subseteq \mathbb{F}[c)[x]$ and $r(x) = p(c - dx) \in \mathbb{F}(c)[x]$. Then q(b) = 0 and r(b) = p(c - db) = p(a) = 0.

Then the monic minimal polynomial $s(x) \in \mathbb{F}(c)[x]$ of b divides q(x) and r(x). Thus, s(x) should be the product of some linear factors of q(x). But

$$r(b_j) = p(c - db_j) = p(a + d(b - b_j)) \neq 0$$

as $a + d(b - b_j) \neq a_i$ for all *i*. So, s(x) = (x - b), i.e., $b \in \mathbb{F}(c)$ and so is a = c - db.

・ コット 小田 マス 田 マン

Theorem 21.7 If \mathbb{K} is an algebraic extension of \mathbb{E} , and \mathbb{E} is an algebraic extension of \mathbb{F} , then \mathbb{K} is an algebraic extension of \mathbb{F} .

Proof. Let $a \in \mathbb{K}$. Suppose $p(x) = b_0 + b_1x + \cdots + b_{n-1}x^{n-1} + x^n \in \mathbb{E}[x]$ is the monic minimal polynomial of a. Then $p(x) \in \mathbb{F}(b_0, \ldots, b_{n-1})[x]$ and $a \in \mathbb{F}(b_0, \ldots, b_{n-1}, a)$ is a finite extension, and is therefore algebraic.

Corollary Let \mathbb{E} is an extension of \mathbb{F} . Then the set of elements of \mathbb{E} is algebraic over \mathbb{F} is a subfield of \mathbb{E} .

Proof. Need only show that if a, b are algebraic over \mathbb{F} , then so are a + b, a - b, ab and also 1/b if b is nonzero.

イロト イポト イヨト イヨト