Chapter 22 Finite Fields

Classifications

Theorem 22.1 For each prime number p and positive integer n, there is a unique finite field of order p^{n} up to isomorphism. Every finite field has order p^{n}.

Proof. Let \mathbb{F} be a finite field with characteristic field p, which must be a prime.
Then $\mathbb{Z}_{p}=\{1,2, \ldots, p\}$ is a subfield, and \mathbb{F} is a finite dimensional vector space of \mathbb{Z}_{p}, say, of dimension n, so that it has p^{n} elements. Next, consider the splitting field \mathbb{F} of $f(x)=x^{p^{n}}-x \in \mathbb{Z}_{p}[x]$. Note that $f(x)$ and $f^{\prime}(x)$ has no common factor. So, $f(x)$ has p^{n} distinct zeros. The set of distinct zeros form a field. So, \mathbb{F} equals the set of zeros.

Theorem 22.2 The set of nonzero elements form a cyclic group under multiplication.
proof. By the Fundamental theorem of finitely generated Abelian group, the set of nonzero elements of \mathbb{F} is isomorphic to $\mathbb{Z}_{m_{1}} \oplus \cdots \oplus \mathbb{Z}_{m_{r}}$ under addition.

Corollary A finite field $\mathbb{F}=G F\left(p^{n}\right)$ with p^{n} elements over the ground field has degree n.

Any generator a of \mathbb{F}^{*} under multiplication has degree n.
Example $1 G F(16)=\mathbb{Z}_{2}[x] /\left\langle x^{4}+x+1\right\rangle$.
Example $2 \mathbb{Z}_{2}[x] /\left\langle x^{3}+x^{2}+1\right\rangle$ and F^{*} is generated by $a=\ldots$, and $f(x)=(x+a)\left(x+a^{2}\right)\left(x+a^{4}\right)$.

Subfields of a Finite Field

Theorem 22.3 Suppose $G F\left(p^{n}\right)$ is given. For every positive integer $m<n$, there is a unique subfield $G F\left(p^{m}\right)$ in $G F\left(p^{n}\right)$. These are the only subfields of $G F\left(p^{n}\right)$.

Proof. Suppose $m \mid n$. Consider the zeros of $x^{p^{m}}-x$ in $G F\left(p^{n}\right)$. They are the elements of order $x^{p^{m}-1}=1$ and 0 .
In fact, the nonzero elements are generated by a^{ℓ} so that a^{ℓ} has order $p^{m}-1$, where $\langle a\rangle=G F\left(p^{n}\right)^{*}$ and

$$
\ell=\left(p^{n}-1\right) /\left(p^{m}-1\right)=p^{n-m}+p^{n-2 m}+\cdots+p^{m}+1 .
$$

Now, if \mathbb{F} is a subfield of $G L\left(p^{n}\right)$ with r elements. Then $\left[G L\left(p^{n}\right): \mathbb{F}\right]=k$ implies that $r^{k}=p^{n}$ so that $r=p^{m}$ and $m \mid n$.

Examples

Example 3 Subfield with 4 elements in $G F(16)=\mathbb{Z}_{2}[x] /\left\langle x^{4}+x+1\right\rangle$ is $\left\{0,1, x^{5}, x^{10}\right\}$.
Example 4 Proper subfields of $G F\left(3^{6}\right)$ with $\langle a\rangle=G F\left(3^{6}\right)^{*}$ are:

$$
G F(3)=\{0\} \cup\left\langle a^{364}\right\rangle, \quad G F(9)=\{0\} \cup\left\langle a^{91}\right\rangle, \quad G F(27)=\{0\} \cup\left\langle a^{28}\right\rangle
$$

Example 5 Subfieds of $G F\left(2^{24}\right)$. See p. 394.

