Chapter 22 Finite Fields

Chapter 22 Finite Fields

・ロト ・回ト ・ヨト

æ

< ∃ >

590

Theorem 22.1 For each prime number p and positive integer n, there is a unique finite field of order p^n up to isomorphism. Every finite field has order p^n .

Proof. Let \mathbb{F} be a finite field with characteristic field p, which must be a prime.

Then $\mathbb{Z}_p = \{1, 2, ..., p\}$ is a subfield, and \mathbb{F} is a finite dimensional vector space of \mathbb{Z}_p , say, of dimension n, so that it has p^n elements. Next, consider the splitting field \mathbb{F} of $f(x) = x^{p^n} - x \in \mathbb{Z}_p[x]$. Note that f(x) and f'(x) has no common factor. So, f(x) has p^n distinct zeros. The set of distinct zeros form a field. So, \mathbb{F} equals the set of zeros. **Theorem 22.2** The set of nonzero elements form a cyclic group under multiplication.

proof. By the Fundamental theorem of finitely generated Abelian group, the set of nonzero elements of \mathbb{F} is isomorphic to $\mathbb{Z}_{m_1} \oplus \cdots \oplus \mathbb{Z}_{m_r}$ under addition.

Corollary A finite field $\mathbb{F} = GF(p^n)$ with p^n elements over the ground field has degree n.

Any generator a of \mathbb{F}^* under multiplication has degree n.

Example 1 $GF(16) = \mathbb{Z}_2[x]/\langle x^4 + x + 1 \rangle.$

Example 2 $\mathbb{Z}_2[x]/\langle x^3 + x^2 + 1 \rangle$ and F^* is generated by a = ..., and $f(x) = (x+a)(x+a^2)(x+a^4)$.

イロト イポト イヨト イヨト

Theorem 22.3 Suppose $GF(p^n)$ is given. For every positive integer m < n, there is a unique subfield $GF(p^m)$ in $GF(p^n)$. These are the only subfields of $GF(p^n)$.

Proof. Suppose m|n. Consider the zeros of $x^{p^m} - x$ in $GF(p^n)$. They are the elements of order $x^{p^m-1} = 1$ and 0. In fact, the nonzero elements are generated by a^{ℓ} so that a^{ℓ} has order $p^m - 1$, where $\langle a \rangle = GF(p^n)^*$ and

$$\ell = (p^n - 1)/(p^m - 1) = p^{n-m} + p^{n-2m} + \dots + p^m + 1.$$

Now, if \mathbb{F} is a subfield of $GL(p^n)$ with r elements. Then $[GL(p^n):\mathbb{F}] = k$ implies that $r^k = p^n$ so that $r = p^m$ and m|n.

イロト イポト イヨト イヨト

Example 3 Subfield with 4 elements in $GF(16) = \mathbb{Z}_2[x]/\langle x^4 + x + 1 \rangle$ is $\{0, 1, x^5, x^{10}\}$.

Example 4 Proper subfields of $GF(3^6)$ with $\langle a \rangle = GF(3^6)^*$ are:

 $GF(3)=\{0\}\cup \langle a^{364}\rangle, \quad GF(9)=\{0\}\cup \langle a^{91}\rangle, \quad GF(27)=\{0\}\cup \langle a^{28}\rangle.$

Example 5 Subfieds of $GF(2^{24})$. See p. 394.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ● ●