Chapter 24 Sylow Theorems

Conjugacy class

Definition Two elements $a, b \in G$ are conjugate in G if $b=x^{-1} a x$ for some $x \in G$. It is an equivalence relation with equivalence class $\operatorname{cl}(a)=\left\{x^{-1} a x: x \in G\right\}$, known as the conjugacy class.

Example S_{4}, A_{4}, D_{4}.
Denote by $C(a)=\{x \in G: a x=x a\}$ the centralizer of $a \in G$.
Theorem 24.1 Let G be a finite group, and $a \in G$. Then

$$
|c l(a)|=|G: C(a)|=|G| /|C(a)| .
$$

Consequently, $|\operatorname{cl}(a)|$ is a factor of $|G|$.
Proof. Define $T:\{x C(a): x \in G\} \rightarrow c l(a)$ by $T(x C(a))=x a x^{-1}$. It is a well defined bijection.

Corollary For any finite group $G,|G|=\sum|G: C(a)|$, where the sum runs through different representatives of the conjugacy relation.

Theorem 24.2 Let G be a p group, i.e., $|G|=p^{m}$ for some positive integer m. Then $|Z(G)|>1$.

Proof. Suppose $|Z(G)|=1$. Then

$$
|G|=\sum|G: C(a)|=1+\sum_{a \neq 1}|G: C(a)|
$$

Corollary Let p be a prime number. A group with p^{2} element is Abelian. Proof. ...

Probability of choosing a commuting pair

Corollary Let G be a finite group with m conjugacy classes. The probability of choosing a commuting pair of elements from G at random is: m / n.

Proof. Consider $K=\{(x, y): x y=y x\}$. Then $(x, y) \in K$ if and only if $y \in \operatorname{cl}(x)$. Fix $a \in G$ with $\operatorname{cl}(a)=\left\{a_{1}, \ldots, a_{t}\right\}$, where $t=|G| /|C(a)|$, and the number of (x, y) pairs in K equals

$$
\left|C\left(a_{1}\right)\right|+\cdots+\left|C\left(a_{t}\right)\right|=t|C(a)|=|G| .
$$

Thus, if there are m conjugacy classes, then $K=\sum_{x \in G}|C(x)|=m \cdot n$. The result follows.

The Sylow Theorems

Theorem 24.3/4 Let G be a finite group with order $p^{\ell} m$, where $p \nmid m$.

1. G contains a subgroup of order p^{k} for each $k=1, \ldots, \ell$.
2. Every subgroup H of G of order p^{k} is a normal subgroup of a subgroup of order p^{k+1} for each $k=1, \ldots, \ell-1$.

Proof. By induction on $|G|$. If $|G|=1$, the result holds trivially. Suppose the result holds for groups of order at most $|G|-1$. If G has a subgroup H of order $p^{\ell} r$ with $r<m$, then the result holds by induction. Assume that G has no such subgroup. Note that

$$
|G|=|Z(G)|+\sum_{a \notin Z(G)}|G: C(a)| .
$$

Now, $p^{k} \mid n$ and $p^{k} \nmid C(a)$. So, p is a factor of $|G| /|C(a)|$ for any $a \notin Z(G)$.
Hence, p is a factor of $Z(G)$, and $Z(G)$ has a subgroup N of order p.
If $\ell=1$, we get the desired contradiction, namely, G has a subgroup of order p^{ℓ}. If not, by induction assumption on G / N, there is a sequence of subgroups $\tilde{H}_{1} \leq \cdots \leq \tilde{H}_{\ell-1}$ of order $p, p^{2}, \ldots, p^{\ell-1}$ so that \tilde{H}_{i} is normal in \tilde{H}_{i+1} for $i=1, \ldots, \ell-2$.
Let $\phi: G \rightarrow G / N$ be the natural epimorphism $\phi(g)=g N$. Then $H_{i}=\phi^{-1}\left[\tilde{H}_{i}\right] \leq G$ will have order p^{i+1}, and the chain of subgroups $N \leq H_{1} \leq \cdots \leq H_{\ell-1}$ in G such that $H_{\ell-1}$ is a subgroup of G with p^{ℓ} element, which is a contradiction.

Definition Let G be a finite group of order $n=p^{\ell} m$, where p is a prime and $p \nmid m$. If $H \leq G$ such that $|H|=p^{\ell}$, then H is a Sylow p-subgroup of G.

Theorem 24.5(a) Any two Sylow p-subgroups of G are conjugate to each other.

Proof. Let $|G|=p^{\ell} m$ with $p \nmid m$, and let K be a Sylow p-subgroup of G. Suppose $C=\left\{K_{1}, \ldots, K_{n}\right\}$ is the set of conjugates of $K=K_{1}$. Then every K_{j} is a Sylow p-subgroup.
Suppose H is a Sylow p-subgroup of G. Consider the map $T: G \rightarrow S_{C}$ such that $g \mapsto \phi_{g}$, where

$$
\phi_{g}\left(K_{1}, \ldots, K_{n}\right)=\left(g K_{1} g^{-1}, \ldots, g K_{n} g^{-1}\right)
$$

Then T is a group homomorphism.
Now, $|H|=p^{\ell}$ so that the order of $T(H)=\left\{\phi_{h}: h \in H\right\}$ is a power of p because $T(H) / \operatorname{Ker}(\phi) \sim H$. Let

$$
\begin{gathered}
\operatorname{Orb}_{T(H)}\left(K_{i}\right)=\left\{h K_{i} h^{-1}: h \in H\right\} \\
\text { and } \quad \operatorname{Stab}_{T(H)}\left(K_{i}\right)=\left\{h \in H: h K_{i} h^{-1}=K_{i}\right\} .
\end{gathered}
$$

Then $|T(H)|=\left|\operatorname{Stab}_{T(H)}\left(K_{i}\right)\right|\left|\operatorname{Orb}_{T(H)}\left(K_{i}\right)\right|$.
So, $\left|\operatorname{Orb}_{T(H)}\left(K_{i}\right)\right|$ and $\left|\operatorname{Stab}_{T(H)}\left(K_{i}\right)\right|$ are powers of p.
Homework 1 If $P<S_{n}$, then $|P|=\left|\operatorname{Stab}_{P}(i) \| \operatorname{Orb}_{P}(i)\right|$.

Claim: There is i such that $\left|\operatorname{Orb}_{T(H)}\left(K_{i}\right)\right|=1$.
It will then follow that $h K_{i} h^{-1}=K_{i}$ so that $H<N\left(K_{i}\right)$, the normalizer of K_{i}, with order $p^{\ell} r$.

As a result, every $h \in H$ is an element of the Sylow p-subgroup of $N\left(K_{i}\right)$ so that $h \in K_{i}$. (Homework 2.)

To prove the claim, note that $|C|=|G: N(K)|=|G| /|N(K)|$.
Homework 3 If $H<G$, then the number of conjugates of H in G equals $|G: N(H)|$.
Now $|G| /|K|=(|G| /|N(K)|)(|N(K) / K|)$ so that $|C|$ is not divisible by p. Observe that $|C|=\sum\left|\operatorname{Orb}_{T(H)}\left(K_{i}\right)\right|=\sum p^{r_{i}}$, which is not divisible by p.

Hence there is $r_{i}=0$.

Theorem 24.5(b) Suppose G has order $p^{\ell} m$, where p is a prime and $p \nmid m$. Then the number n of Sylow p-subgroups of G satisfies $p \mid(n-1)$ and $n \mid m$.
Proof. Let K be a Sylow k-subgroup, and $C=\left\{K_{1}, \ldots, K_{n}\right\}$ be all its conjugate with $K=K_{1}$.

Claim 1. $n-1$ is divisible by p.
Consider $\left|\operatorname{Orb}_{T(K)}\left(K_{i}\right)\right|=p^{s_{i}}$ for each i, and $s_{i}=0$ if and only if $K \leq K_{i}$. Thus, $s_{1}=0$ and $s_{i}>0$ for all other i. The claim follows.

Claim 2. $|C|=n$ is a factor of m.
Note that $n=|C|=|G| /|N(K)|=p^{\ell} m / p^{\ell} t=m / t$.
Corollary If G has only one Sylow p-subgroup H, then H is normal.

Some consequences and examples

Theorem 24.6 Suppose $p<q$ are distinct primes such that p is not a factor of $q-1$. If $|G|=p q$, then G is cyclic.

Proof. By Theorem 25.5 (b), the number n_{p} of p-element group H has the form $1+k p$ and divides q and hence $p q$. So, $1+k p=1, p, q, p q$. But p is not a factor of $q-1$. So, $k=0$.

Similarly, there is only one subgroup K of order q.
If $H=\langle x\rangle$ and $K=\langle y\rangle$, then $x y=y x$ and $G=H K=\langle x y\rangle$.
There is only one subgroup of order p and one subgroup of order q, and G is isomorphic to $\mathbb{Z}_{p} \oplus \mathbb{Z}_{q}$.

Examples

Example Sylow subgroups of S_{3} : 1 Sylow 3-subgroup; 3 Sylow 2-subgroup.
Example Sylow subgroups of A_{4}.
4 Sylow 3-subgroups, and 1 Sylow 2-subgroup containing 4 two element groups.
Example In D_{12}, there are seven subgroups of order 2. $\left\{R_{0}, R_{180}\right\}$ is not conjugate to the other 6 2-element subgroups.

Example A group of order 40. There is only one subgroup of order 5.
Reason. Suppose there are n such subgroups. Then $n=1+5 k$, and n is a factor of 8 . So, $k=0$.

There is/are 1 subgroup or 5 subgroups of order 8 .
Reason. Suppose there are n such subgroups. Then $n=1+2 k$ and is a factor of 5 so that is is a factor of 5 .

If the former holds, then $G=H K$.
If the latter holds, none of them is normal, and they are conjugate to each other.

More examples

Example A group of order 30.
There are 1 or 6 subgroup of order $5 ; 1$ or 10 subgroup of order 3 .
If there are 6 subgroups of order 5 , and 10 subgroups of order 3 , there will be more than 30 elements.

One of these subgroup is normal, and we can form $H K=\langle y\rangle$, a 15 element cyclic subgroup of G, which is normal in G so that $G /(H K)=\{H K, x H K\}$.
So, $G=\left\{x^{i} y^{j}: 0 \leq i \leq 1,0 \leq j \leq 14\right\}$.
Example A group of 72 element has a non-trivial proper normal subgroup.
Reason: There are one or four 9-element subbroup.
If there is one, we are done. If not, let H_{1}, H_{2} be two of such groups. Then $\left|H_{1} H_{2}\right|=\left|H_{1}\right|\left|H_{2}\right| /\left|H_{1} \cap H_{2}\right|=81 /\left|H_{1} \cap H_{2}\right|$ so that $\left|H_{1} \cap H_{2}\right|=3$.
Now, $\left|H_{1}\right|=\left|H_{2}\right|=9$ so that H_{1}, H_{2} are Abelian, and $H_{1} \cup H_{2} \subseteq N\left(H_{1} \cap H_{2}\right)$. Moreover, $H_{1} H_{2} \subseteq N\left(H_{1} \cap H_{2}\right)$ has at least $81 / 3=27$ elements. Since, $\left|N\left(H_{1} \cap H_{2}\right)\right|$ divides 72 , and divisible by 9 . So, it is 36 or 72.

Example Suppose $|G|=255=3 \cdot 5 \cdot 17$. Show that G is cyclic.
Proof. By the Sylow 17-subgroup H is normal so that $G=N(H)$.
Now, $|N(H) / C(H)|$ divides $|\operatorname{Aut}(H)|=\left|\operatorname{Aut}\left(\mathbb{Z}_{17}\right)\right|=16$ because $\phi: N(H) \rightarrow \operatorname{Aut}(H)$ defined by $\phi(g)=T_{g}: H \rightarrow H$ so that $T_{g}(x)=g x g^{-1}$ is a group homomorphism with kernel $C(H)$ so that $N(H) / C(H)$ is isomorphic to a subgroup of $\operatorname{Aut}(H)$.

Because $|N(H) / C(H)|$ also divides 255 . We conclude that $|N(H) / C(H)|=1$. So, every $x \in N(H)=G$ lies in $C(H)$ implying x commutes with all elements in H.

Thus, $H \subseteq Z(G)$ and $|Z(G)|=17,51,85,255$ and $|G / Z(G)|$ is $15,5,3,1$.
So, $G / Z(G)$ is cyclic, and G is Abelian. Thus, G is cyclic.

Homework

(1) Let $P<S_{n}$. Show that $|P|=\left|\operatorname{Stab}_{P}(i)\right|\left|\operatorname{Orb}_{P}(i)\right|$.

Hint: Prove that the map $\sigma \operatorname{Stab}_{P}(i) \mapsto \sigma(i)$ for $\sigma \in P$ is a bijection.
(2) Let $H<G$ be such that $|H|=p^{\ell},|G|=p^{\ell} m$, where $p \nmid m$. Suppose $K_{i}<G$ with $\left|K_{i}\right|=p^{\ell}$, and $H<N\left(K_{i}\right)=\left\{g \in G: g K_{i} g^{-1}=K_{i}\right\}$.
(a) Show that $H K_{i}$ is a subgroup of $N\left(K_{i}\right)$ and

$$
\left|H \| K_{i}\right| /\left|H \cap K_{i}\right|=\left|H K_{i}\right| .
$$

(b) Deduce that $\left|H \cap K_{i}\right|=|H|$ so that $H \subseteq K_{i}$.
(3) Let $H<G$.
(a) Show that $N(H)=\left\{g \in G: g H g^{-1}=H\right\}$ is a subgroup.
(b) Show that the number of conjugates of H in G equals $|G: N(H)|$.

