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Historical Background

Definition A group is simple if it has no nontrivial proper normal subgroup.

The definition was proposed by Galois; he showed that An is simple for
n ≥ 5 in 1831.
It is an important step in showing that one cannot express the solutions
of a quintic equation in radicals.
If possible, one would factor a group G as G0 = G, find a normal
subgroup G1 of maximum order to form G0/G1. Then find a maximal
normal subgroup G2 of G1 and get G1/G2, and so on until we get the
composition factors: G0/G1, G1/G2, . . . , Gn−1/Gn, with Gn = {e}.
Jordan and Hölder proved that these factors are independent of the
choices of the normal subgroups in the process.
Jordan in 1870 found four infinite series including: Zp for a prime p,
SL(n,Zp)/Z(SL(n,Zp)) except when (n, p) = (2, 2) or (2, 3).
Between 1982-1905, Dickson found more infinite series; Miller and Cole
showed that 5 (sporadic) groups constructed by Mathieu in 1861 are
simple.
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In 1950s, more infinite families were found, and the classification project
began.
Brauer observed that the centralizer has an order 2 element is important;
Feit-Thompson in 1960 confirmed the 1900 conjecture that non-Abelian
simple group must have even order.
From 1966-75, 19 new sporadic groups were found.
Thompson developed many techniques in the N-group paper.
Gorenstein presented an outline for the classification project in a lecture
series at University of Chicago in 1972.
Aschbacher and Fischer further developed the techniques of Thompson.
Then Griess construct the monster group with about 8 · 1053 elements
represented as matrices in M196883.
In 2004, it was announced that the classification was completed.
There are 18 countable series, and 26 sporadic groups. 1

1The Tits group in one of the series is also referred to as the 27th sporadic
group by some researchers.
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Nonsimplicity Tests

Theorem 25.1 If G is a finite group with |G| = n, which is a composite
number, and p be a prime factor of n. If 1 is the only divisor of n that is equal
to 1 modulo p, then G is not simple.

Proof. If n is a prime power, then the center of G is a non-trivial, and there
will be a normal subgroup.
If n = prm such that p 6 |m, then the assumption implies that the Sylow
p-subgroup is normal.

Remark Try n = 4, 8, 9, 10, . . . .

From 1 to 200, simple groups could only have the following orders:

12, 24, 30, 36, 48, 56, 60, 72, 80, 90, 96, 105, 108, 112, 120, 132, 144, 150,
160, 168, 180, 192.

In fact, Theorem 25.1 can be used to rule out 90% of the numbers from 1 to
n if n ≥ 500.
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Theorem 25.2 If G is a finite group with |G| = n = 2(2k + 1), where k ≥ 1.
Then G is not simple.

Proof. Consider the map from G to SG defined by g 7→ Tg such that
Tg(x) = gx. Now, G has an element g of order 2 so that Tg is a product of
length 2 and length 1 cycles. However, Tg has no 1-cycle, else,
Tg(x) = gx = x implies that g = e. Thus, Tg is a product of (2k + 1) cycles.
Thus, set of elements in G corresponds to even permutations in SG is a
normal subgroup of index 2. Thus, it is a normal subgroup of G.
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Theorem 25.3 [Generalized Cayley Theorem] Suppose H < G. Let S be the
group of all permutation of the left cosets of H in G. Then φ : G→ S defined
by φ(g) = Tg such that Tg(xH) = gxH is a group homomorphism. The kernel
of φ lies in H and contains every normal subgroup of G that is contained in H.

Proof. Every g ∈ G induces a permutation Tg of the cosets xH of H by the
action Tg(xH) = gxH.
Now, φ : G→ S defined by φ(g) = Tg is a group homomorphism, and
g ∈ Ker(φ) implies that Tg is the identity map so that H = Tg(H) = gH.
Thus, g ∈ H. So, Ker(φ) ⊆ H.
Moreover, for any normal subgroup K of G lying in H and k ∈ K, we have
Tk(xH) = kxH = xk̂H = xH. Thus, k ∈ Ker(φ) ⊆ H.
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Corollary 1 [Index Theorem] If G is a finite group and H is a proper subgroup
of G such that |G| does not divide |G : H|!, then H contains a non-trivial
normal subgroup of G. So, G is not simple.

Proof. Suppose φ is defined as in the proof of Theorem 25.3. Then Ker(φ)
is normal in G contained in H, and G/Ker(φ) is isomorphic to a subgroup
of S. Thus, |G/Ker(φ)| = |G|/|Ker(φ)| divides |S| = |G : H|!. Since |G|
does not divide |G : H|!, the order of Ker(φ) must be greater than 1.

Corollary 2 [Embedding Theorem] If a finite non-Abelian simple group G
has a subgroups of index n, then G is isomorphic to a subgroup of An.

Proof. Let H be the subgroup of index n, and let Sn be the group of all
permutations of the n left cosets of H in G. By Theorem 25.3, there is a
non-trivial homomorphism from G into Sn.
Since G is simple and the kernel of a homomorphism is a normal subgroup
of G, we see that the mapping from G into Sn is one-to-one, so that G is
isomorphic to some subgroup of Sn.
So, G ∩An = G or G ∩An is a subgroup of index 2.
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Further elimination of possible orders of simple groups

By the Index Theorem, we can further eliminate the possible orders of simple
groups.

Example If |G| = 80, then 16 does not divide 5!. So, G is not simple.

Same argument applies to |G| = 12, 24, 36, 48, 96, 108, 160, 192.

We are left with: 56, 60, 72, 105, 112, 120, 132, 144, 168, and 180.

Example For 56 = 8 · 7, assume that there are 8 7-element subgroups, and 7
8-element subgroups. Then we get 8 · 6 order 7 elements, and at least
8 + 8− 4 = 12 different elements in the union of 2 8-element subgroups, which
is too many.

Similarly, we can get rid of 105, 132.
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Further techniques

We are left with 60, 72, 112, 120, 144, 168, 180.

Of course, A5 has 60 element is simple. To show that A5 is simple, assume
that A5 has nontrivial proper subgroup H. Then |H| can be
2,3,4,5,6,10,12,15,20,30.

Now, A5 has 24 elements of order 5, 20 elements of order 3, no elements of
order 15.

If |H| is 3, 6, 12, 15, then |A5/H| is relatively prime to 3 so that all 20 order 3
elements will be in H!

If |H| is 5, 10, 20, then |A5/H| is relatively prime to 5 so that all 24 order 5
elements will be in H!

If |H| = 30, then |A5/H| is relatively prime to 3 and 5 so that all the order 3
and 5 elements will be in H!

If H| = 2 or 4, then |A5/H| = 30 or 15. Then A5/H has an element of order
15 implying A5 has an element of order 15, a contradiction.

Similarly, one can show that SL(2,Z7)/Z(SL(2,Z7)) has 168 (?) elements is
simple.

Chapter 25 Finite Simple Groups


