Chapter 25 Finite Simple Groups

Historical Background

Definition A group is simple if it has no nontrivial proper normal subgroup.

- The definition was proposed by Galois; he showed that A_{n} is simple for $n \geq 5$ in 1831.
- It is an important step in showing that one cannot express the solutions of a quintic equation in radicals.
- If possible, one would factor a group G as $G_{0}=G$, find a normal subgroup G_{1} of maximum order to form G_{0} / G_{1}. Then find a maximal normal subgroup G_{2} of G_{1} and get G_{1} / G_{2}, and so on until we get the composition factors: $G_{0} / G_{1}, G_{1} / G_{2}, \ldots, G_{n-1} / G_{n}$, with $G_{n}=\{e\}$.
- Jordan and Hölder proved that these factors are independent of the choices of the normal subgroups in the process.
- Jordan in 1870 found four infinite series including: \mathbb{Z}_{p} for a prime p, $S L\left(n, \mathbb{Z}_{p}\right) / Z\left(S L\left(n, \mathbb{Z}_{p}\right)\right)$ except when $(n, p)=(2,2)$ or $(2,3)$.
- Between 1982-1905, Dickson found more infinite series; Miller and Cole showed that 5 (sporadic) groups constructed by Mathieu in 1861 are simple.
- In 1950s, more infinite families were found, and the classification project began.
- Brauer observed that the centralizer has an order 2 element is important; Feit-Thompson in 1960 confirmed the 1900 conjecture that non-Abelian simple group must have even order.
- From 1966-75, 19 new sporadic groups were found.
- Thompson developed many techniques in the N -group paper.
- Gorenstein presented an outline for the classification project in a lecture series at University of Chicago in 1972.
- Aschbacher and Fischer further developed the techniques of Thompson.
- Then Griess construct the monster group with about $8 \cdot 10^{53}$ elements represented as matrices in M_{196883}.
- In 2004, it was announced that the classification was completed.
- There are 18 countable series, and 26 sporadic groups. ${ }^{1}$

[^0]
Nonsimplicity Tests

Theorem 25.1 If G is a finite group with $|G|=n$, which is a composite number, and p be a prime factor of n. If 1 is the only divisor of n that is equal to 1 modulo p, then G is not simple.

Proof. If n is a prime power, then the center of G is a non-trivial, and there will be a normal subgroup.
If $n=p^{r} m$ such that $p \nmid m$, then the assumption implies that the Sylow p-subgroup is normal.

Remark Try $n=4,8,9,10, \ldots$.
From 1 to 200, simple groups could only have the following orders:
$12,24,30,36,48,56,60,72,80,90,96,105,108,112,120,132,144,150$, 160, 168, 180, 192.

In fact, Theorem 25.1 can be used to rule out 90% of the numbers from 1 to n if $n \geq 500$.

Theorem 25.2 If G is a finite group with $|G|=n=2(2 k+1)$, where $k \geq 1$. Then G is not simple.

Proof. Consider the map from G to S_{G} defined by $g \mapsto T_{g}$ such that $T_{g}(x)=g x$. Now, G has an element g of order 2 so that T_{g} is a product of length 2 and length 1 cycles. However, T_{g} has no 1-cycle, else, $T_{g}(x)=g x=x$ implies that $g=e$. Thus, T_{g} is a product of $(2 k+1)$ cycles. Thus, set of elements in G corresponds to even permutations in S_{G} is a normal subgroup of index 2 . Thus, it is a normal subgroup of G.

Theorem 25.3 [Generalized Cayley Theorem] Suppose $H<G$. Let S be the group of all permutation of the left cosets of H in G. Then $\phi: G \rightarrow S$ defined by $\phi(g)=T_{g}$ such that $T_{g}(x H)=g x H$ is a group homomorphism. The kernel of ϕ lies in H and contains every normal subgroup of G that is contained in H.
Proof. Every $g \in G$ induces a permutation T_{g} of the cosets $x H$ of H by the action $T_{g}(x H)=g x H$.
Now, $\phi: G \rightarrow S$ defined by $\phi(g)=T_{g}$ is a group homomorphism, and $g \in \operatorname{Ker}(\phi)$ implies that T_{g} is the identity map so that $H=T_{g}(H)=g H$. Thus, $g \in H$. So, $\operatorname{Ker}(\phi) \subseteq H$.
Moreover, for any normal subgroup K of G lying in H and $k \in K$, we have $T_{k}(x H)=k x H=x \hat{k} H=x H$. Thus, $k \in \operatorname{Ker}(\phi) \subseteq H$.

Corollary 1 [Index Theorem] If G is a finite group and H is a proper subgroup of G such that $|G|$ does not divide $|G: H|$!, then H contains a non-trivial normal subgroup of G. So, G is not simple.

Proof. Suppose ϕ is defined as in the proof of Theorem 25.3. Then $\operatorname{Ker}(\phi)$ is normal in G contained in H, and $G / \operatorname{Ker}(\phi)$ is isomorphic to a subgroup of S. Thus, $|G / \operatorname{Ker}(\phi)|=|G| /|\operatorname{Ker}(\phi)|$ divides $|S|=|G: H|$!. Since $|G|$ does not divide $|G: H|$!, the order of $\operatorname{Ker}(\phi)$ must be greater than 1 .

Corollary 2 [Embedding Theorem] If a finite non-Abelian simple group G has a subgroups of index n, then G is isomorphic to a subgroup of A_{n}.

Proof. Let H be the subgroup of index n, and let S_{n} be the group of all permutations of the n left cosets of H in G. By Theorem 25.3, there is a non-trivial homomorphism from G into S_{n}.
Since G is simple and the kernel of a homomorphism is a normal subgroup of G, we see that the mapping from G into S_{n} is one-to-one, so that G is isomorphic to some subgroup of S_{n}.
So, $G \cap A_{n}=G$ or $G \cap A_{n}$ is a subgroup of index 2 .

Further elimination of possible orders of simple groups

By the Index Theorem, we can further eliminate the possible orders of simple groups.

Example If $|G|=80$, then 16 does not divide 5!. So, G is not simple.
Same argument applies to $|G|=12,24,36,48,96,108,160,192$.
We are left with: $56,60,72,105,112,120,132,144,168$, and 180.
Example For $56=8 \cdot 7$, assume that there are 87 -element subgroups, and 7 8 -element subgroups. Then we get $8 \cdot 6$ order 7 elements, and at least $8+8-4=12$ different elements in the union of 28 -element subgroups, which is too many.

Similarly, we can get rid of $105,132$.

Further techniques

We are left with $60,72,112,120,144,168,180$.
Of course, A_{5} has 60 element is simple. To show that A_{5} is simple, assume that A_{5} has nontrivial proper subgroup H. Then $|H|$ can be 2,3,4,5,6,10,12,15,20,30.

Now, A_{5} has 24 elements of order 5, 20 elements of order 3, no elements of order 15.

If $|H|$ is $3,6,12,15$, then $\left|A_{5} / H\right|$ is relatively prime to 3 so that all 20 order 3 elements will be in H !

If $|H|$ is $5,10,20$, then $\left|A_{5} / H\right|$ is relatively prime to 5 so that all 24 order 5 elements will be in H !

If $|H|=30$, then $\left|A_{5} / H\right|$ is relatively prime to 3 and 5 so that all the order 3 and 5 elements will be in H !

If $H \mid=2$ or 4 , then $\left|A_{5} / H\right|=30$ or 15 . Then A_{5} / H has an element of order 15 implying A_{5} has an element of order 15, a contradiction.

Similarly, one can show that $S L\left(2, \mathbb{Z}_{7}\right) / Z\left(S L\left(2, \mathbb{Z}_{7}\right)\right)$ has 168 (?) elements is simple.

[^0]: ${ }^{1}$ The Tits group in one of the series is also referred to as the 27 th sporadic group by some researchers.

