Chapter 26 Generators and Relations

Motivation

Construct the largest group satisfying some prescribed properties.
For example: D_{4} is the only group generated by a, b, satisfying

$$
a^{4}=b^{2}=(a b)^{2}=e .
$$

One can show that any other group generated by two elements that satisfy the above relations is isomorphic to D_{4}.

The subgroup $\left\{R_{0}, R_{180}, H, V\right\}$ of D_{4} is generated by $a=R_{180}$ and $b=H$ that satisfy

$$
a^{4}=b^{2}=(a b)^{2}=e \text { and } a^{2}=e .
$$

Definitions and Notation

Let $S=\{a, b, c, \ldots\}$. Create $S^{-1}=\left\{a^{-1}, b^{-1}, c^{-1}, \ldots\right\}$.
Define the set $W(S)$ of words of finite length $x_{1} \cdots x_{k}$ with $x_{i} \in S \cup S^{-1}$. Combine two words $x_{1} \cdots x_{k}$ and $y_{1} \cdots y_{t}$ by juxtaposition yielding $x_{1} \cdots x_{k} y_{1} \cdots y_{t}$, and let e represents the empty word.

Define an equivalence relation on $W(S)$ by: two words are equivalent if one can be obtained from the other by adding or deleting words of the form $x x^{-1}$ or $x^{-1} x$, where $x \in S$.

Theorem 26.1 The set of equivalence classes of $W(S)$ under the above relation form a group under the operation $[u][v]=[u v]$.

The group is called a free group on S.
Theorem 26.2 Every group is a homomorphic image of a free group.
Proof. Let G be a group, and let S be a generating set. Then define $\phi: W(S) / \sim \rightarrow G$ by $\phi\left(\left[x_{1} \cdots x_{k}\right]\right)=\left(x_{1} \cdots x_{k}\right)_{G} \cdots$

Corollary Every group is isomorphic to a factor group of a free group.

Presentations: Generators and relations

Let G be a group generated by $A=\left\{a_{1}, \ldots, a_{n}\right\}$, and let F be the free group on A.

Let $W=\left\{w_{1}, \ldots, w_{t}\right\}$ be a subset of F and N be the smallest normal subgroup of F containing W.

Then G is given by the generators a_{1}, \ldots, a_{n} and the relations $w_{1}, \ldots, w_{t}=e$ if there is an isomorphism $\phi: F / N \rightarrow G$ such that $\phi\left(a_{i} N\right)=a_{i}$.

In such a case, we write

$$
G=\left\langle a_{1}, \ldots, a_{n} \mid w_{1}=\cdots=w_{t}=e\right\rangle
$$

Example $\mathbb{Z}=\langle a\rangle$.
Example $D_{4}=\left\langle a, b \mid a^{4}=b^{2}=(a b)^{2}=e\right\rangle$.
Proof. Let F be the free group on $\{a, b\}$, and let N be the smallest subgroup containing $\left\{a^{4}, b^{2},(a b)^{2}\right\}$.

Define $\phi: F \rightarrow D_{4}$ such that $\phi(a)=R_{90}, \phi(b)=H$. Then $N \subseteq \operatorname{ker}(\phi)$. Then $F / \operatorname{ker}(\phi)$ is isomorphic to D_{4}.

Claim: $F / N=K=\left\{N, a N, a^{2} N, a^{3} N, b N, a b N, a^{2} b N, a^{3} b N\right\}$.
We need only show that $(a N) K=K$ and $(b N) K=K$. The first case is clear.

One need to focus on the second case. For example, $(b N)(a N)=b a N b^{2}=$ $b a b N b=a^{-1} a b a b N b=a^{-1} N b=a^{-1} a^{4} N b=a^{3} N b=s^{3} b N$.

Other cases are similar.
So, F / N has at most 8 elements.
Now, $F / \operatorname{ker}(\phi)$ is isomorphic to $(F / N) /(\operatorname{ker} \phi / N)$.
Thus, $\operatorname{ker}(\phi) / N$ is trivial, i.e., $\operatorname{ker}(\phi)=N$, and hence F / N the same as $F / \operatorname{ker}(\phi)$, which is isomorphic to D_{4}.

More results

Theorem 16.3 Let $G=\left\langle a_{1}, \ldots, a_{n} \mid w_{1}=\cdots=w_{t}=e\right\rangle$, and
$\tilde{G}=\left\langle a_{1}, \ldots, a_{n} \mid w_{1}=\cdots=w_{t}=w_{t+1} \cdots=w_{t+k}=e\right\rangle$.
Then $\tilde{G}=\phi[G]$ for some group homomorphism ϕ.
Proof. Exercise 5.
Corollary If K is a group satisfying the defining relations of a finite group G (with the same set of generators) and $|K| \geq|G|$, then K is isomorphic to G.

More examples

Example Quaternions. $G=\left\langle a, b \mid a^{2}=b^{2}=(a b)^{2}\right\rangle$. Let F be the free group on $\{a, b\}$ and N is the smallest normal subgroup containing $b^{-2} a^{2},(a b)^{-2} a^{2}$.

Show that $\left.K=N, b N, b^{2} N, b^{3} N, a N, a b N, a b^{2} N, a b^{3} N\right\}$ is closed under multiplication.

Then show that, say, by inspecting the group table, $K \sim\{ \pm 1, \pm i, \pm j, \pm k\}$ with $i^{2}=j^{2}=k^{2}=-1, i j=k=-j i, j k=i=-k j, k i=j=-i k$ satisfies the relations and has 8 elements.

Groups with eight elements

Example $G=\left\langle a, b \mid a^{3}, b^{9}, a^{-1} b a^{-1} b^{-1}\right\rangle$ implies that $G=\mathbb{Z}_{3}$.
Note that $b^{-1}=a^{-1} b a$ imples that $b=a^{-1} b^{-1} a$. Then $b=a^{-3} b a^{3}=a^{-2} b^{-1} a^{2}=a^{-1} b a^{1}=b^{-1}$. Thus, $b^{2}=e$. Because $b^{9}=e$. So, $b=e$, and $G=\mathbb{Z}_{3}$.

Theorem 26.4 Up to isomorphism, there are five groups of order 8:
$\mathbb{Z}_{8}, \mathbb{Z}_{4} \oplus \mathbb{Z}, \mathbb{Z}_{2} \oplus \mathbb{Z}_{2} \oplus \mathbb{Z}_{2}, D_{4}$, the quaternions.
Proof. Suppose G is non-Abelian. There is an element a of order 4. Else all elements has order 2 and is Abelian.

Thus, $G=H \cup H b$ with $H=\langle a\rangle$. Now, $b^{2} \notin\left\{b, a b, a^{2} b, a^{3} b\right\}$. Else, $b \in H$.
Also, $b^{2} \neq a$ because b^{2} commute with b, but a does not.
Similarly, $b^{2} \neq a^{-1}=a^{3}$.
So, $b^{2}=e$ or a^{2}. In the former case, we get D_{4}; in the latter case, we get the quaternions.

Characterization of Dihedral groups

Theorem 26.5 Any group generated by a pair of order 2 elements is dihedral.
Proof. Suppose $G=\left\langle a, b \mid a^{2}, b^{2}\right\rangle$.
If $(a b)$ has infinite order, then $F=\{e, a, b, a b, b a, a b a, b a b, a b a b, b a b a, \ldots\}$.
If $G=F / H$ and $H \neq\{e\}$. Then H contains $(a b)^{i},(a b)^{i} a,(b a)^{i}$, or $(b a)^{i} b$.
Then G cannot contain elements with word length larger than $2 i+2$.
Thus, G is finite and $a b$ has finite order.
If (ab) has order n, then $G=\left\{a, b, a b, b a, \ldots,(a b)^{n}=e=(b a)^{n}\right\}$.

