Chapter 29 Symmetry and Counting

Motivation

Basic Problem Counting different designs under (permutation) symmetry.
Example Color the vertexes of a hexagonal ceramic by 3 black and 3 white.
Rotation symmetry under C_{6}. There are four types.
Example Construct bracelet using 3 black and 3 white beads. Symmetry under D_{6}. There are three types.

See http://people.math.sfu.ca/jtmulhol/math302/notes/23-Burnside.pdf
Let G be a group of permutation acting on S.
For $\phi \in G$, let $\operatorname{Fix}(\phi)=\{i \in S: \phi(i)=i\}$.
For $i \in G$, let $\operatorname{stab}_{G}(i)=\{\phi \in G: \phi(i)=i\}$, and $\operatorname{orb}_{G}(i)=\{\phi(i): \phi \in G\}$.

Burnside's Theorem

Theorem 29.1 If G is a finite group of permutations on a set S, then the number of orbits of elements of S under G is $\left.\frac{1}{G} \sum_{\phi \in G} \right\rvert\,$ fix $(\phi) \mid$.
Proof. Consider $(\phi, i) \in G \times S$ such that $\phi(i)=i$. The number of such pairs is:

$$
n=\sum_{\phi \in G}|f i x(\phi)|=\sum_{i \in S}\left|s t a b_{G}(i)\right|
$$

If s and t lie in the same orbit, then $\operatorname{orb}_{G}(s)=\operatorname{orb}_{G}(t)$, and

$$
\left|\operatorname{stab}_{G}(s)\right|=|G| /\left|\operatorname{orb}_{G}(s)\right|=|G| /\left|\operatorname{orb}_{G}(t)\right|=\left|\operatorname{sta}_{G}(t)\right| .
$$

So, if we choose $s \in S$ and sum over $\operatorname{orb}_{G}(s)$, we have

$$
\sum_{t \in o r b_{G}(s)}\left|s t a b_{G}(t)\right|=\left|\operatorname{orb}_{G}(s)\right|\left|s t a b_{G}(s)\right|=|G|
$$

Thus, summing over all $g \in G$, one orbit at a time, we have

$$
\sum_{\phi \in G}|f i x(\phi)|=\sum_{i \in S}|s t a b(i)|=|G| \cdot \text { (number of orbits). }
$$

Example

Example the number distinct colorings of the faces of a cube using 3 colors:
Let X be the set of 3^{6} possible face colour combinations.
Let the rotation group G of the cube act on X with 24 elements.

- one identity element which leaves all 3^{6} elements of X unchanged.
- six 90-degree face rotations, each of which leaves 3^{3} of the elements of X unchanged.
- three 180-degree face rotations, each of which leaves 3^{4} of the elements of X unchanged
- eight 120 -degree vertex rotations, each of which leaves 3^{2} of the elements of X unchanged
- six 180-degree edge rotations, each of which leaves 3^{3} of the elements of X unchanged

The average fix size is thus $\frac{1}{24}\left(3^{6}+3^{3} 6+3^{4} 3+3^{2} 8+3^{3} 6\right)=57$.
In general, if we use n colors, we have $\frac{1}{24}\left(n^{6}+n^{3} 12+n^{4} 3+n^{2} 8\right)$. (Proof.)

Note that a key idea is the group action on a set.
G acts on G, G acts on coset of $H \leq G, G$ acts on geometrical objects/patterns.

