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Motivation

Use algebraic techniques to protect data transmission affected by noise
(human error, imperfect channels, interference etc.)
Suppose a (0, 1) sequence of length of x1 · · ·x500 is transmitted.
If there is 1% probability that xi is transmitted incorrectly for each xi,
then the probability of correct transmission is (0.99)500 ∼ .0066.
If each xi is transmitted as xixixi, and the message is decoded by the
maximum likelihood scheme, then the probability for xi to be wrongly
decoded is:

3(0.01)2(0.99)2 + (0.01)3 ∼ 0.000298 < .0003.

Thus, the probability of correct transmission for each xi is larger than
.9997, and the probability of correct transmission of x1 · · ·x500 is larger
than (.9997)500 ∼ .86.
But repeating many times is not an efficient scheme, so we use algebraic
techniques.
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Hamming (7,4) Code

Example Encode (x1, x2, x3, x4) by (x1, x2, x3, x4)G with

G =

1 0 0 0 1 1 0
0 1 0 0 1 0 1
0 0 1 0 1 1 1
0 0 0 1 0 1 1

 .

Then we have 24 code words in 27 such that every pair code words differ in at
least 3 digits.

This can be checked by examining the list of nonzero code words in p. 528.
Here we need only compute (x− y)H using Z2 arithmetic for any x− y 6= 0.
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Linear Code

Definition An (n, k) linear code over a finite field is a k-dimensional subspace
V in Fn such that the elements in V are the code words. When F is Z2, we
have a binary code.

Remark The Hamming (7,4) code is a binary code.

Example The set {0000, 0101, 1010, 1111} is a (4,2) binary code.

Example The set {0000, 0121, 0212, 1022, 1110, 1201, 2011, 2102, 2220} is a
(4,2) linear code over Z3.
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Hamming Distance, Hamming Weight

Definition The Hamming weight wt(u) of u ∈ Fn is the number of nonzero
entries in u ∈ Fn. The Hamming distance d(u, v) of u, v ∈ Fn is the number of
positions in which they differ so that d(u, v) = wt(u− v).

Theorem 31.1 The Hamming distance is a metric (a distance function) in Fn.

Proof. (1) d(u, v) ≥ 0 with equality if and only if u− v = 0.

(2) d(u, v) = d(v, u).

(3) For u, v, w,

d(u, w) = wt(u− w) ≤ wt(u− v) + wt(v − w) = d(u, v) + d(v, w).

To see that wt(u− w) ≤ wt(u− v) + wt(v − w), note that if ui, wi are
different then ui, vi or vi, wi are different.
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Theorem 31.2 Suppose the Hamming weight of a linear code is at least 2t + 1.
Then it can correct any t or fewer errors. Alternatively, it can be used to detect
2t or few errors.

Proof. We use the nearest neighbor decoding.
Suppose v is a received word. Decode it as the nearest code word.
If there is more than one, do not decode. [There are too many errors.]
Suppose u is transmitted and v is received with no more than t errors so
that d(u, v) ≤ t.
Let w be a code word other than u.
Then 2t + 1 ≤ d(u, w) ≤ d(u, v) + d(v, w) ≤ t + d(v, w)
so that d(v, w) > t. So, u is the unique correct code word nearest v.
Clearly, if u is transmitted as v with fewer than 2t error, then it cannot be
another code word.
So, one can detect that are errors in the transmission.
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Standard generator matrix

Remark We cannot use it to do both.

For the Hamming (7,3) code, when there are two errors, one may decode it
assuming one error occurs, or assume two errors and refuse to decode.

Systematic code.

We encode a code word (a1 · · · ak) as (a1 · · · ak)G, where G =
[
Ik | A

]
.

The first k digits are the message digits.

Example Let

G =

[1 0 0 1 1 0
0 1 0 1 0 1
0 0 1 1 1 1

]
.

000000, 001111, 010101, 100110, 110011, 101001, 011010, 111100.

All nonzero code words have weight at least 3.

So, it will correct single error, or detect up to 2 errors.
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Example Example Messages are: 00, 01, 02, 10, 11, 12, 20, 21, 22. Let

G =
[

1 0 2 1
0 1 2 2

]
.

Code words:

0000, 0122, 0211, 1021, 1110, 1202, 2012, 2101, 2220.

All code words have weights at least 3.

So, it will correct single error, or detect up to 2 errors.
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Parity-Check Matrix Decoding

Suppose G = [Ik | A] is the generator matrix. Let

H =
[
−A
In−k

]
be the parity check matrix.

If w is received, computer wH.
If wH = 0, then assume no error.
If wH equals s times the ith row of H, then decode w as w − sei, where
ei is the ith row of In.
If there are more than one such instance, do not decode.
If the code is binary, we simply change the ith position of w.
If the last two cases do not happen, assume more than two errors occur,
and do not decode.
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Examples

Use the Hamming (7,4) code with

G =

1 0 0 0 1 1 0
0 1 0 0 1 0 1
0 0 1 0 1 1 1
0 0 0 1 0 1 1

 .

If v = 0000110 is received, then vH = 110 which is the first row of H.

So, we decode it as 1000110 so that the original message is 1000.

If w = 1011111 is received, then wH = 101, which is the second row of H.
So, we decode it as 1111111 so that the original message is 1111.

If u = 1001101 is sent, and z = 1001011 is received so that zH = 110 is the
first row. We will wrongly decode it as 0001.
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Orthogonality relation

Lemma Let C be a systematic (n, k) linear code over F with a standard
generator matrix G and parity matrix H. Then v ∈ C if and only if vH = 0.

Proof. If v ∈ C, then v = uG so that vH = uGH = uO = 0.

If vH = 0, then v ∈ Ker(T ) where T : Fn → Fn−k defined by x 7→ xH.

We will show that the row space of G is Ker(T ) so that vH = 0 ensures
that v = uG for some u.

Note that row space of G has dimension k, range space of T has n− k. So,
it suffices to prove that C ⊆ Ker(T ).

It is clear because GH = 0.
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Parity-Check Matrix Decoding

Theorem 31.3 Parity-check matrix decoding will correct any single error if and
only if the rows of the parity-check matrix are nonzero and no one row is a
scalar multiple of any other rows.

Proof.
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Coset Decoding

Example Consider the (6,3) binary linear code.
C = {000000, 100110, 010101, 001001, 1110011, 101101, 011110, 111000}.

One can construct the 8 cosets, and use the element with minimum weight as
the coset leaders for each of them.
In the above example, the coset leaders (listed as the first column) are:
000000, 100000, 010000, 001000, 000100,000010,000001,100001.

One can decode a received word as the code word in the vertical column
containing the received word.

Theorem 31.4 The coset decoding is the same as minimum distance decoding.
proof. Let w be a received word.
If v is the coset leader of the coset containing w, then w + C = v + C.
If w is decoded as c, and c′ is another code word, then

d(w, c′) = wt(w − c′) ≥ wt(v) = wt(w − c) = d(w, c).

Thus, w is decoded as c, which has a minimum distance to w among all
code words.
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Same coset - same syndrome

Definition If an (n, k) linear code over F has parity-check matrix H, then, for
any vecotr u ∈ Fn, the vector uH is call the dyndrome of u.

Theorem 31.5 Let C be an (n,k) linear code over F with a parity-check matrix
H. Then, two vectors of Fn are in the same coset of C if and only if they have
the same syndrome.
Proof. Two vectors u and v are in the same coset of C if and only if
u− v ∈ C.
By the orthogonality lemma, u and v are in the same coset if and only if
0 = (u− v)H = uH − vH.

Syndrome decoding for a received word w.
1. Compute wH, the syndrome.
2. Find the coset leader v such that wH = vH.
3. Decode the vector sent was w − v.
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