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There are intimate relation between field extensions and the groups of
automorphisms on the extension fields.

Definition Let E be an extension field of .

An autormorphism from E to E is a ring isomorphism from E to E.

The Galois group of E over F is the group of all automorphisms of E fixing I,
and is denoted by Gal(E/F).

If H is a subgroup of Gal(E/F), the set

Eg ={z €E: ¢(z) ==z forall $ € H}

is the fixed field of H.
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We may consider the following examples and construct the lattice diagrams of
the Galois groups and subfields.

Example 1 If E = Q(v/2), then Gal(E/Q) = Z».

Example 2 If E = Q(4/2), then Gal(E/Q) = {d}.

Example 3 If E = Q(+v/2,i) and F = Q(i), then Gal(E/F) = (a) = Za.
Let H = {e,a}. The fixed field will be Q(v/2,1).

Example 4 Let E = Q(v/3,v/5). Then Gal(E/Q) = Z2 @ Zs.

It has subgroups ((1,0)), ((0,1)), ((1,1)).

The corresponding fixed fields are Q(v/3), Q(v/5), Q(+/15).

Example 5 Let E = Q(w, ¥/2) with w = ¢"*™/3. Then Gal(E/Q) = Ss.
It has subgroups (8), (a), (afB), (af?).

The corresponding fixed fields are Q(w), Q(¥/2), Q(¥/2w), Q(v/2w?).
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Fundamental Theorem of Galois Theory

Theorem 32.1 Let F be a finite field or a field of characteristic 0.

If E is the splitting field of f(z) € F[x], then there is a one-one correspondence
between a subfield K of E containing F a subgroup

Gal(E/K) of Gal(E/F). Furthermore,

@ [E:K]=|Gal(E/K)| and [K : F] = |Gal(E/F)|/|Gal(E/K)|.
The index of Gal(E/K) in Gal(E/F) equals the degree of [K : F].

@ If K is the splitting field of some polynomial in F[z], then Gal(E/F)
is a normal subgroup of Gal(E/F) and Gal(K/F) is isomorphic to
Gal(E/F)/Gal(K/F).

@ The fixed field of H = Gal(E/K) is K, i.e., K = Egai(z/x)-

@ If H is a subgroup of Gal(E/F), then H = Gal(E/Eg).

The automorphism group of E fixing Ex is H.

Proof. See http://www.math.uiuc.edu/r-ash/Algebra/Chapter6.pdf
http://planetmath.org/proofoffundamentaltheoremofgaloistheory
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More examples

Example 6 Let E = Q(w) with w = ¢>™/7. To determine the number of
subfields, not that w is the splitting field of f(z) = 2" — 1 € Q[z].

Note that a : Q(w) — Q(w) sending w to w® has order 6.

So, [Q(w) : Q] = [Gal(Q(w)/Q)| = 6.

Now, 27 —1=(z —1)(z® +--- + 2+ 1) and

¢(w) can only be a zero of the irreducible polynomial 2% + - 4+ 1.
Thus, [Q(w) : Q] = 6.

Now, there are two proper subgroups, namely, (a?), (a®).

Example 7 Let E = GF(p") of F = GF(p).

Then there is a zero b of a degree n irreducible polynomial f(z) € Flz]
such that E = F(b).

Note that o(a) = a” is a field isomorphism, and (o) has order n.

We see that Gal(GF(p")/GF (p)) = Zn.
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Solvability of Polynomials by radicals

Example Solve az? 4+ bz + ¢ = 0.

Example The solution of 3 4+ bz 4+ c =0 are
A+ B, —(A+ B)/2+ (A— B)V=3/2, —(A+ B)/2 — (A— B)v/—3/2,

where

3 —c b c? 3[—c b c?
A= =f /2 e B={ ¢y, <
s T\t > TV
Definition Let IF be a field and f(x) € F[z]. We say that f(z) is solvable by
radicals over T if f(z) splits in some extension F(a1,...,a,) such that af € F
and a¥ € Far,...,ai—1) fori=2,...,n.

Example 8 Let w*?™/8. Then z® — 3 = 0 is solvable by radicals:

Solutions:

L ¥3vEL, +tEVSD
7
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Solvable groups

Definition A group G is solvable if there is a sequence of subgroups
{6}2H0<H1 <"'<I‘I}CIG7
where H; is normal in H;11 and H;y1/H; is Abelian.

Remark If one can express the zeros of a polynomial f(z) in radicals, then the
splitting fields of f(x) can be obtained by adjoining n;th root of unity, so that
the Galois group will be a solvable group.

Theorem 32.2 Let F be a field of characteristic 0. If E is the splitting field of
2" — a € Fz], then Gal(E/F) is solvable.

Proof. Let b be a zero of ™ — a.

Case 1 Suppose F contains a root of unit w with w™ = 1.

Then the zeros are b, bw, ..., bw" ! so that E = F(b).

Hence, every o € Gal(E/F) is determined by o(b) = w’b. So,
o102(b) = w b = w*b = 0904 (b)

for any o1, o2.
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Case 2 Suppose F does not contain a root of unity.

If b € E is a zero and w is a primitive root of unity of w™ =1 in some
extension field, then b, wb € E implies w € E.

Then Gal(F(w)/F) is Abelian because

oioj(w) = w”? = w'lojoi(w).

Now,
{e} < Gal(E/F(w)) < Gal(E/F),
and
Gal(E/F(w)) and Gal(E/F)/Gal(E/F(w)) = Gal(F(w)/F)
are Abelian by Case 1, and is solvable. Thus, Gal(E/F) is solvable. O
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Solvable groups and subgroups

Theorem 32.3 A factor group of a solvable group is solvable
Proof. If {e} < Ho < --- < Hy = G, then
{e} = HoN/N < --- < HyN/N = G/N
is the corresponding sequence of Abelian factors. O

Theorem 32.4 Suppose N is a normal subgroup of G. If N and G/N are
solvable, then so is G.

Proof. Suppose
{e}=No<---<N¢e=N and N/N=Hy/N<---<H;/N=G/N

are Ableian factors. Then No < N1 < ..., Ny < H; < --- < Hy = G are the
Abelian factors. O
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Solvable by radicals and solvable groups

Theorem 32.5 Let F be a field of characteristic 0, and f(z) € F[z] splits in
F(ai,...,a:), where ai* € F and a'? € F(a1,...,a,-1) fori=2,...,¢.

If E is the splitting field of f(z) in F(ay,...,a:), then Gal(E/F) is solvable.
Proof. By induction on ¢t. Let a = a}*. Suppose t = 1. Then F C E C F(a1).
Let L be the splitting filed of f(z) = ™! — a.

Then F C E C L, and Gal(E/F) = Gal(L/F)/Gal(L/E) is solvable.

Suppose t > 1. Let L be the splitting field of ™' — a over E, and let K C L
be the splitting field of ™! — a over F.

Then L is a splitting field of (z"! — a) f(z) over F, and L is a splitting field
of f(x) over K.

Since F(a;) C K, it follows that f(z) splits in K(ag,...,a:).

By induction assumption. Gal(LL/K) is solvable. By Theorem 32.2,
Gal(K/F) is solvable. By Theorem 32.1, Gal(L/F) is solvable.

By Theorem 32.1 and Theorem 32.3, Gal(E/F) = Gal(L/F)/Gal(L/E) is
solvable. O
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Insolvability of a quintic

Example Let g(x) = 3z° — 152 + 5. Then g(x) is not solvable by radicals.
Proof. By Eisenstein’s Criterion, g(z) is irreducible.

Because g(—2) < 0 and g(—1) > 0, there is a root in (-2, —1).

One can check that there are zeros in (0,1) and (1,2).

Note that g'(z) = 15z* — 15 so that there are only three real zeros. (Five
real roots will generate 4 distinct critical points.)

Now, suppose a1, ..., as are the five zeros. Then K = Q(a1,...,as) and

Gal(K/Q) < Ss.

Observe that [Q(a1) : Q] =5 and Gal(K/Q) contains an element order two
element exchanging the two complex zeros.

So, Gal(K/Q) = S5, which is not solvable. O
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