Chapter 32 Galois Theory

Motivation

There are intimate relation between field extensions and the groups of automorphisms on the extension fields.

Definition Let \mathbb{E} be an extension field of \mathbb{F}.
An autormorphism from \mathbb{E} to \mathbb{E} is a ring isomorphism from \mathbb{E} to \mathbb{E}.
The Galois group of \mathbb{E} over \mathbb{F} is the group of all automorphisms of \mathbb{E} fixing \mathbb{F}, and is denoted by $\operatorname{Gal}(\mathbb{E} / \mathbb{F})$.
If H is a subgroup of $\operatorname{Gal}(\mathbb{E} / \mathbb{F})$, the set

$$
E_{H}=\{x \in \mathbb{E}: \phi(x)=x \text { for all } \phi \in H\}
$$

is the fixed field of H.

Examples

We may consider the following examples and construct the lattice diagrams of the Galois groups and subfields.

Example 1 If $\mathbb{E}=\mathbb{Q}(\sqrt{2})$, then $\operatorname{Gal}(\mathbb{E} / \mathbb{Q})=\mathbb{Z}_{2}$.
Example 2 If $\mathbb{E}=\mathbb{Q}(\sqrt[3]{2})$, then $\operatorname{Gal}(\mathbb{E} / \mathbb{Q})=\{d\}$.
Example 3 If $\mathbb{E}=\mathbb{Q}(\sqrt[4]{2}, i)$ and $\mathbb{F}=\mathbb{Q}(i)$, then $\operatorname{Gal}(\mathbb{E} / \mathbb{F})=\langle\alpha\rangle \equiv \mathbb{Z}_{4}$.
Let $H=\left\{e, \alpha^{2}\right\}$. The fixed field will be $\mathbb{Q}(\sqrt{2}, i)$.
Example 4 Let $\mathbb{E}=\mathbb{Q}(\sqrt{3}, \sqrt{5})$. Then $\operatorname{Gal}(\mathbb{E} / \mathbb{Q})=\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}$.
It has subgroups $\langle(1,0)\rangle,\langle(0,1)\rangle,\langle(1,1)\rangle$.
The corresponding fixed fields are $\mathbb{Q}(\sqrt{3}), \mathbb{Q}(\sqrt{5}), \mathbb{Q}(\sqrt{15})$.
Example 5 Let $\mathbb{E}=\mathbb{Q}(w, \sqrt[3]{2})$ with $w=e^{i 2 \pi / 3}$. Then $\operatorname{Gal}(\mathbb{E} / \mathbb{Q})=S_{3}$.
It has subgroups $\langle\beta\rangle,\langle\alpha\rangle,\langle\alpha \beta\rangle,\left\langle\alpha \beta^{2}\right\rangle$.
The corresponding fixed fields are $\mathbb{Q}(w), \mathbb{Q}(\sqrt[3]{2}), \mathbb{Q}(\sqrt[3]{2} w), \mathbb{Q}\left(\sqrt[2]{2} w^{2}\right)$.

Fundamental Theorem of Galois Theory

Theorem 32.1 Let \mathbb{F} be a finite field or a field of characteristic 0 . If \mathbb{E} is the splitting field of $f(x) \in \mathbb{F}[x]$, then there is a one-one correspondence between a subfield \mathbb{K} of \mathbb{E} containing \mathbb{F} a subgroup $\operatorname{Gal}(\mathbb{E} / \mathbb{K})$ of $\operatorname{Gal}(\mathbb{E} / \mathbb{F})$. Furthermore,

- $[\mathbb{E}: \mathbb{K}]=|\operatorname{Gal}(\mathbb{E} / \mathbb{K})|$ and $[\mathbb{K}: \mathbb{F}]=|\operatorname{Gal}(\mathbb{E} / \mathbb{F})| /|\operatorname{Gal}(\mathbb{E} / \mathbb{K})|$. The index of $\operatorname{Gal}(\mathbb{E} / \mathbb{K})$ in $\operatorname{Gal}(\mathbb{E} / \mathbb{F})$ equals the degree of $[\mathbb{K}: \mathbb{F}]$.
- If \mathbb{K} is the splitting field of some polynomial in $\mathbb{F}[x]$, then $\operatorname{Gal}(\mathbb{E} / \mathbb{F})$ is a normal subgroup of $\operatorname{Gal}(\mathbb{E} / \mathbb{F})$ and $\operatorname{Gal}(\mathbb{K} / \mathbb{F})$ is isomorphic to $\operatorname{Gal}(\mathbb{E} / \mathbb{F}) / \operatorname{Gal}(\mathbb{K} / \mathbb{F})$.
- The fixed field of $H=\operatorname{Gal}(\mathbb{E} / \mathbb{K})$ is \mathbb{K}, i.e., $K=E_{\mathrm{Gal}(\mathbb{E} / \mathbb{K})}$.
- If H is a subgroup of $\operatorname{Gal}(\mathbb{E} / \mathbb{F})$, then $H=\operatorname{Gal}\left(\mathbb{E} / \mathbb{E}_{H}\right)$. The automorphism group of \mathbb{E} fixing \mathbb{E}_{H} is H.

Proof. See http://www.math.uiuc.edu/~r-ash/Algebra/Chapter6.pdf http://planetmath.org/proofoffundamentaltheoremofgaloistheory

More examples

Example 6 Let $\mathbb{E}=\mathbb{Q}(w)$ with $w=e^{i 2 \pi / 7}$. To determine the number of subfields, not that w is the splitting field of $f(x)=x^{7}-1 \in \mathbb{Q}[x]$.

Note that $\alpha: \mathbb{Q}(w) \rightarrow \mathbb{Q}(w)$ sending w to w^{3} has order 6 .
So, $[\mathbb{Q}(w): \mathbb{Q}]=|\operatorname{Gal}(\mathbb{Q}(w) / \mathbb{Q})| \geq 6$.
Now, $x^{7}-1=(x-1)\left(x^{6}+\cdots+x+1\right)$ and
$\phi(w)$ can only be a zero of the irreducible polynomial $x^{6}+\cdots+1$.
Thus, $[\mathbb{Q}(w): \mathbb{Q}]=6$.
Now, there are two proper subgroups, namely, $\left\langle\alpha^{2}\right\rangle,\left\langle\alpha^{3}\right\rangle$.
Example 7 Let $\mathbb{E}=G F\left(p^{n}\right)$ of $\mathbb{F}=G F(p)$.
Then there is a zero b of a degree n irreducible polynomial $f(x) \in \mathbb{F}[x]$
such that $\mathbb{E}=\mathbb{F}(b)$.
Note that $\sigma(a)=a^{p}$ is a field isomorphism, and $\langle\sigma\rangle$ has order n.
We see that $\operatorname{Gal}\left(G F\left(p^{n}\right) / G F(p)\right) \equiv \mathbb{Z}_{n}$.

Solvability of Polynomials by radicals

Example Solve $a x^{2}+b x+c=0$.
Example The solution of $x^{3}+b x+c=0$ are

$$
A+B,-(A+B) / 2+(A-B) \sqrt{-3} / 2,-(A+B) / 2-(A-B) \sqrt{-3} / 2
$$

where

$$
A=\sqrt[3]{\frac{-c}{2}+\sqrt{\frac{b^{3}}{27}+\frac{c^{2}}{4}}} \quad \text { and } \quad B=\sqrt[3]{\frac{-c}{2}+\sqrt{\frac{b^{3}}{27}-\frac{c^{2}}{4}}}
$$

Definition Let \mathbb{F} be a field and $f(x) \in \mathbb{F}[x]$. We say that $f(x)$ is solvable by radicals over \mathbb{F} if $f(x)$ splits in some extension $\mathbb{F}\left(a_{1}, \ldots, a_{n}\right)$ such that $a_{1}^{k} \in \mathbb{F}$ and $a_{i}^{k_{i}} \in \mathbb{F}\left(a_{1}, \ldots, a_{i-1}\right)$ for $i=2, \ldots, n$.
Example 8 Let $w^{i 2 \pi / 8}$. Then $x^{8}-3=0$ is solvable by radicals:
Solutions:

$$
\pm \sqrt[8]{3} \sqrt{ \pm 1}, \quad \pm \sqrt[8]{3} \frac{(1 \pm \sqrt{-1})}{\sqrt{2}}
$$

Solvable groups

Definition A group G is solvable if there is a sequence of subgroups

$$
\{e\}=H_{0}<H_{1}<\cdots<H_{k}=G,
$$

where H_{i} is normal in H_{i+1} and H_{i+1} / H_{i} is Abelian.
Remark If one can express the zeros of a polynomial $f(x)$ in radicals, then the splitting fields of $f(x)$ can be obtained by adjoining n_{i} th root of unity, so that the Galois group will be a solvable group.

Theorem 32.2 Let \mathbb{F} be a field of characteristic 0 . If \mathbb{E} is the splitting field of $x^{n}-a \in \mathbb{F}[x]$, then $\operatorname{Gal}(\mathbb{E} / \mathbb{F})$ is solvable.

Proof. Let b be a zero of $x^{n}-a$.
Case 1 Suppose \mathbb{F} contains a root of unit w with $w^{n}=1$.
Then the zeros are $b, b w, \ldots, b w^{n-1}$ so that $\mathbb{E}=\mathbb{F}(b)$.
Hence, every $\sigma \in \operatorname{Gal}(\mathbb{E} / \mathbb{F})$ is determined by $\sigma(b)=w^{j} b$. So,

$$
\sigma_{1} \sigma_{2}(b)=w^{j+k} b=w^{k+j} b=\sigma_{2} \sigma_{1}(b)
$$

for any σ_{1}, σ_{2}.

Case 2 Suppose \mathbb{F} does not contain a root of unity.
If $b \in \mathbb{E}$ is a zero and w is a primitive root of unity of $w^{n}=1$ in some extension field, then $b, w b \in \mathbb{E}$ implies $w \in \mathbb{E}$.

Then $\operatorname{Gal}(\mathbb{F}(w) / \mathbb{F})$ is Abelian because

$$
\sigma_{i} \sigma_{j}(w)=w^{i j}=w^{j i} \sigma_{j} \sigma_{i}(w)
$$

Now,

$$
\{e\} \leq \operatorname{Gal}(\mathbb{E} / \mathbb{F}(w)) \leq \operatorname{Gal}(\mathbb{E} / \mathbb{F})
$$

and
$\operatorname{Gal}(\mathbb{E} / \mathbb{F}(w)) \quad$ and $\quad \operatorname{Gal}(\mathbb{E} / \mathbb{F}) / \operatorname{Gal}(E / \mathbb{F}(w)) \equiv \operatorname{Gal}(\mathbb{F}(w) / \mathbb{F})$
are Abelian by Case 1 , and is solvable. Thus, $\operatorname{Gal}(\mathbb{E} / \mathbb{F})$ is solvable.

Solvable groups and subgroups

Theorem 32.3 A factor group of a solvable group is solvable
Proof. If $\{e\}<H_{0}<\cdots<H_{k}=G$, then

$$
\{e\}=H_{0} N / N<\cdots<H_{k} N / N=G / N
$$

is the corresponding sequence of Abelian factors.
Theorem 32.4 Suppose N is a normal subgroup of G. If N and G / N are solvable, then so is G.

Proof. Suppose

$$
\{e\}=N_{0}<\cdots<N_{t}=N \quad \text { and } \quad N / N=H_{0} / N<\cdots<H_{s} / N=G / N
$$

are Ableian factors. Then $N_{0}<N_{1}<\ldots, N_{t}<H_{1}<\cdots<H_{s}=G$ are the Abelian factors.

Solvable by radicals and solvable groups

Theorem 32.5 Let \mathbb{F} be a field of characteristic 0 , and $f(x) \in \mathbb{F}[x]$ splits in $\mathbb{F}\left(a_{1}, \ldots, a_{t}\right)$, where $a_{1}^{n_{1}} \in \mathbb{F}$ and $a_{i}^{n_{i}} \in \mathbb{F}\left(a_{1}, \ldots, a_{i-1}\right)$ for $i=2, \ldots, t$. If \mathbb{E} is the splitting field of $f(x)$ in $\mathbb{F}\left(a_{1}, \ldots, a_{t}\right)$, then $\operatorname{Gal}(\mathbb{E} / \mathbb{F})$ is solvable.
Proof. By induction on t. Let $a=a_{1}^{n_{1}}$. Suppose $t=1$. Then $\mathbb{F} \subseteq \mathbb{E} \subseteq \mathbb{F}\left(a_{1}\right)$.
Let \mathbb{L} be the splitting filed of $f(x)=x^{n_{1}}-a$.
Then $\mathbb{F} \subseteq \mathbb{E} \subseteq \mathbb{L}$, and $\operatorname{Gal}(\mathbb{E} / \mathbb{F}) \equiv \operatorname{Gal}(\mathbb{L} / \mathbb{F}) / \operatorname{Gal}(\mathbb{L} / \mathbb{E})$ is solvable.
Suppose $t>1$. Let \mathbb{L} be the splitting field of $x^{n_{1}}-a$ over \mathbb{E}, and let $\mathbb{K} \subseteq \mathbb{L}$ be the splitting field of $x^{n_{1}}-a$ over \mathbb{F}.
Then \mathbb{L} is a splitting field of $\left(x^{n_{1}}-a\right) f(x)$ over \mathbb{F}, and \mathbb{L} is a splitting field of $f(x)$ over \mathbb{K}.
Since $\mathbb{F}\left(a_{1}\right) \subseteq K$, it follows that $f(x)$ splits in $K\left(a_{2}, \ldots, a_{t}\right)$.
By induction assumption. $\operatorname{Gal}(\mathbb{L} / \mathbb{K})$ is solvable. By Theorem 32.2, $\operatorname{Gal}(\mathbb{K} / \mathbb{F})$ is solvable. By Theorem 32.1, $\operatorname{Gal}(\mathbb{L} / \mathbb{F})$ is solvable.
By Theorem 32.1 and Theorem $32.3, \operatorname{Gal}(\mathbb{E} / \mathbb{F}) \equiv \operatorname{Gal}(\mathbb{L} / \mathbb{F}) / \operatorname{Gal}(\mathbb{L} / \mathbb{E})$ is solvable.

Insolvability of a quintic

Example Let $g(x)=3 x^{5}-15 x+5$. Then $g(x)$ is not solvable by radicals.
Proof. By Eisenstein's Criterion, $g(x)$ is irreducible.
Because $g(-2)<0$ and $g(-1)>0$, there is a root in $(-2,-1)$.
One can check that there are zeros in $(0,1)$ and $(1,2)$.
Note that $g^{\prime}(x)=15 x^{4}-15$ so that there are only three real zeros. (Five real roots will generate 4 distinct critical points.)

Now, suppose a_{1}, \ldots, a_{5} are the five zeros. Then $\mathbb{K}=\mathbb{Q}\left(a_{1}, \ldots, a_{5}\right)$ and $\operatorname{Gal}(\mathbb{K} / \mathbb{Q}) \leq S_{5}$.

Observe that $\left[\mathbb{Q}\left(a_{1}\right): \mathbb{Q}\right]=5$ and $\operatorname{Gal}(\mathbb{K} / \mathbb{Q})$ contains an element order two element exchanging the two complex zeros.
$\operatorname{So}, \operatorname{Gal}(\mathbb{K} / \mathbb{Q})=S_{5}$, which is not solvable.

