Chapter 32 Galois Theory

Chapter 32 Galois Theory

문 🕨 🗄 문

There are intimate relation between field extensions and the groups of automorphisms on the extension fields.

Definition Let $\mathbb E$ be an extension field of $\mathbb F.$

An automorphism from \mathbb{E} to \mathbb{E} is a ring isomorphism from \mathbb{E} to \mathbb{E} . The Galois group of \mathbb{E} over \mathbb{F} is the group of all automorphisms of \mathbb{E} fixing \mathbb{F} , and is denoted by $\operatorname{Gal}(\mathbb{E}/\mathbb{F})$.

If H is a subgroup of $\operatorname{Gal}(\mathbb{E}/\mathbb{F})$, the set

$$E_H = \{ x \in \mathbb{E} : \phi(x) = x \text{ for all } \phi \in H \}$$

is the fixed field of H.

Examples

We may consider the following examples and construct the lattice diagrams of the Galois groups and subfields.

Example 1 If $\mathbb{E} = \mathbb{Q}(\sqrt{2})$, then $\operatorname{Gal}(\mathbb{E}/\mathbb{Q}) = \mathbb{Z}_2$.

Example 2 If $\mathbb{E} = \mathbb{Q}(\sqrt[3]{2})$, then $\operatorname{Gal}(\mathbb{E}/\mathbb{Q}) = \{d\}$.

Example 3 If $\mathbb{E} = \mathbb{Q}(\sqrt[4]{2}, i)$ and $\mathbb{F} = \mathbb{Q}(i)$, then $\operatorname{Gal}(\mathbb{E}/\mathbb{F}) = \langle \alpha \rangle \equiv \mathbb{Z}_4$. Let $H = \{e, \alpha^2\}$. The fixed field will be $\mathbb{Q}(\sqrt{2}, i)$.

Example 4 Let $\mathbb{E} = \mathbb{Q}(\sqrt{3}, \sqrt{5})$. Then $\operatorname{Gal}(\mathbb{E}/\mathbb{Q}) = \mathbb{Z}_2 \oplus \mathbb{Z}_2$. It has subgroups $\langle (1,0) \rangle$, $\langle (0,1) \rangle$, $\langle (1,1) \rangle$.

The corresponding fixed fields are $\mathbb{Q}(\sqrt{3})$, $\mathbb{Q}(\sqrt{5})$, $\mathbb{Q}(\sqrt{15})$.

Example 5 Let $\mathbb{E} = \mathbb{Q}(w, \sqrt[3]{2})$ with $w = e^{i2\pi/3}$. Then $\operatorname{Gal}(\mathbb{E}/\mathbb{Q}) = S_3$. It has subgroups $\langle \beta \rangle, \langle \alpha \rangle, \langle \alpha \beta \rangle, \langle \alpha \beta^2 \rangle$.

The corresponding fixed fields are $\mathbb{Q}(w), \mathbb{Q}(\sqrt[3]{2}), \mathbb{Q}(\sqrt[3]{2}w), \mathbb{Q}(\sqrt[2]{2}w^2)$.

イロト イヨト イヨト イヨト

Theorem 32.1 Let \mathbb{F} be a finite field or a field of characteristic 0. If \mathbb{E} is the splitting field of $f(x) \in \mathbb{F}[x]$, then there is a one-one correspondence between a subfield \mathbb{K} of \mathbb{E} containing \mathbb{F} a subgroup $\operatorname{Gal}(\mathbb{E}/\mathbb{K})$ of $\operatorname{Gal}(\mathbb{E}/\mathbb{F})$. Furthermore,

- $[\mathbb{E} : \mathbb{K}] = |\operatorname{Gal}(\mathbb{E}/\mathbb{K})|$ and $[\mathbb{K} : \mathbb{F}] = |\operatorname{Gal}(\mathbb{E}/\mathbb{F})|/|\operatorname{Gal}(\mathbb{E}/\mathbb{K})|$. The index of $\operatorname{Gal}(\mathbb{E}/\mathbb{K})$ in $\operatorname{Gal}(\mathbb{E}/\mathbb{F})$ equals the degree of $[\mathbb{K} : \mathbb{F}]$.
- If K is the splitting field of some polynomial in F[x], then Gal(E/F) is a normal subgroup of Gal(E/F) and Gal(K/F) is isomorphic to Gal(E/F)/Gal(K/F).
- The fixed field of $H = \operatorname{Gal}(\mathbb{E}/\mathbb{K})$ is \mathbb{K} , i.e., $K = E_{\operatorname{Gal}(\mathbb{E}/\mathbb{K})}$.
- If H is a subgroup of Gal(𝔼/𝔅), then H = Gal(𝔼/𝔼_H).
 The automorphism group of 𝔅 fixing 𝔅_H is H.

 $\label{eq:proof_second} \ensuremath{\textit{Proof}}. See \ensuremath{\mbox{http://www.math.uiuc.edu/~r-ash/Algebra/Chapter6.pdf} \\ \ensuremath{\mbox{http://planetmath.org/proofoffundamentaltheoremofgaloistheory} \\ \ensuremath{\textit{Proof}}. See \ensuremath{\mbox{http://planetmath.org/proofoffundamentaltheoremofgaloistheory} \\ \ensuremath{\mbox{http://planetmath.org/proofoffundamentaltheoremofgaloistheory} \\ \ensuremath{\mbox{http://planetmath.org/proofoffundamentaltheoremofgaloistheory} \\ \ensuremath{\mbox{http://planetmath.org/proofoffundamentaltheoremofgaloistheory} \\ \ensuremath{\mbox{http://planetmath.org/proofoffundamentaltheoremofgaloistheory} \\ \ensuremath{\mbox{http://planetmath.org/proofoffundamentaltheoremofgaloist$

イロト 不同 とうほう 不同 とう

More examples

Example 6 Let $\mathbb{E} = \mathbb{Q}(w)$ with $w = e^{i2\pi/7}$. To determine the number of subfields, not that w is the splitting field of $f(x) = x^7 - 1 \in \mathbb{Q}[x]$.

Note that $\alpha : \mathbb{Q}(w) \to \mathbb{Q}(w)$ sending w to w^3 has order 6.

So, $[\mathbb{Q}(w) : \mathbb{Q}] = |\operatorname{Gal}(\mathbb{Q}(w)/\mathbb{Q})| \ge 6.$

Now, $x^7 - 1 = (x - 1)(x^6 + \dots + x + 1)$ and

 $\phi(w)$ can only be a zero of the irreducible polynomial $x^6+\dots+1.$

Thus, $[\mathbb{Q}(w) : \mathbb{Q}] = 6.$

Now, there are two proper subgroups, namely, $\langle \alpha^2 \rangle, \langle \alpha^3 \rangle$.

Example 7 Let $\mathbb{E} = GF(p^n)$ of $\mathbb{F} = GF(p)$.

Then there is a zero b of a degree n irreducible polynomial $f(x)\in \mathbb{F}[x]$ such that $\mathbb{E}=\mathbb{F}(b).$

Note that $\sigma(a) = a^p$ is a field isomorphism, and $\langle \sigma \rangle$ has order *n*.

We see that $\operatorname{Gal}(GF(p^n)/GF(p)) \equiv \mathbb{Z}_n$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ● ●

Solvability of Polynomials by radicals

Example Solve $ax^2 + bx + c = 0$. **Example** The solution of $x^3 + bx + c = 0$ are A + B, $-(A + B)/2 + (A - B)\sqrt{-3}/2$, $-(A + B)/2 - (A - B)\sqrt{-3}/2$,

where

$$A = \sqrt[3]{\frac{-c}{2} + \sqrt{\frac{b^3}{27} + \frac{c^2}{4}}} \quad \text{and} \quad B = \sqrt[3]{\frac{-c}{2} + \sqrt{\frac{b^3}{27} - \frac{c^2}{4}}}.$$

Definition Let \mathbb{F} be a field and $f(x) \in \mathbb{F}[x]$. We say that f(x) is solvable by radicals over \mathbb{F} if f(x) splits in some extension $\mathbb{F}(a_1, \ldots, a_n)$ such that $a_1^k \in \mathbb{F}$ and $a_i^{k_i} \in \mathbb{F}(a_1, \ldots, a_{i-1})$ for $i = 2, \ldots, n$.

Example 8 Let $w^{i2\pi/8}$. Then $x^8 - 3 = 0$ is solvable by radicals:

Solutions:

$$\pm \sqrt[8]{3}\sqrt{\pm 1}, \qquad \pm \sqrt[8]{3}\frac{(1\pm\sqrt{-1})}{\sqrt{2}}.$$

Chapter 32 Galois Theory

イロト 人間 トイヨト イヨト

Solvable groups

Definition A group G is solvable if there is a sequence of subgroups

$$\{e\} = H_0 < H_1 < \dots < H_k = G,$$

where H_i is normal in H_{i+1} and H_{i+1}/H_i is Abelian.

Remark If one can express the zeros of a polynomial f(x) in radicals, then the splitting fields of f(x) can be obtained by adjoining n_i th root of unity, so that the Galois group will be a solvable group.

Theorem 32.2 Let \mathbb{F} be a field of characteristic 0. If \mathbb{E} is the splitting field of $x^n - a \in \mathbb{F}[x]$, then $\operatorname{Gal}(\mathbb{E}/\mathbb{F})$ is solvable.

Proof. Let b be a zero of $x^n - a$.

Case 1 Suppose \mathbb{F} contains a root of unit w with $w^n = 1$.

Then the zeros are b, bw, \ldots, bw^{n-1} so that $\mathbb{E} = \mathbb{F}(b)$.

Hence, every $\sigma \in \operatorname{Gal}(\mathbb{E}/\mathbb{F})$ is determined by $\sigma(b) = w^j b$. So,

$$\sigma_1 \sigma_2(b) = w^{j+k}b = w^{k+j}b = \sigma_2 \sigma_1(b)$$

for any σ_1, σ_2 .

イロト イヨト イヨト イヨト 三日

Case 2 Suppose \mathbb{F} does not contain a root of unity.

If $b \in \mathbb{E}$ is a zero and w is a primitive root of unity of $w^n = 1$ in some extension field, then $b, wb \in \mathbb{E}$ implies $w \in \mathbb{E}$.

Then $Gal(\mathbb{F}(w)/\mathbb{F})$ is Abelian because

$$\sigma_i \sigma_j(w) = w^{ij} = w^{ji} \sigma_j \sigma_i(w).$$

Now,

$$\{e\} \leq \operatorname{Gal}(\mathbb{E}/\mathbb{F}(w)) \leq \operatorname{Gal}(\mathbb{E}/\mathbb{F}),$$

and

$$\operatorname{Gal}(\mathbb{E}/\mathbb{F}(w))$$
 and $\operatorname{Gal}(\mathbb{E}/\mathbb{F})/\operatorname{Gal}(E/\mathbb{F}(w)) \equiv \operatorname{Gal}(\mathbb{F}(w)/\mathbb{F})$

are Abelian by Case 1, and is solvable. Thus, $\operatorname{Gal}(\mathbb{E}/\mathbb{F})$ is solvable.

→ 同 ▶ → 臣 ▶ → 臣 ▶

Theorem 32.3 A factor group of a solvable group is solvable *Proof.* If $\{e\} < H_0 < \cdots < H_k = G$, then

$$\{e\} = H_0 N/N < \dots < H_k N/N = G/N$$

is the corresponding sequence of Abelian factors.

Theorem 32.4 Suppose N is a normal subgroup of G. If N and G/N are solvable, then so is G.

Proof. Suppose

 $\{e\} = N_0 < \dots < N_t = N$ and $N/N = H_0/N < \dots < H_s/N = G/N$

are Ableian factors. Then $N_0 < N_1 < \ldots, N_t < H_1 < \cdots < H_s = G$ are the Ableian factors.

イロト イヨト イヨト イヨト

Solvable by radicals and solvable groups

Theorem 32.5 Let \mathbb{F} be a field of characteristic 0, and $f(x) \in \mathbb{F}[x]$ splits in $\mathbb{F}(a_1, \ldots, a_t)$, where $a_1^{n_1} \in \mathbb{F}$ and $a_i^{n_i} \in \mathbb{F}(a_1, \ldots, a_{i-1})$ for $i = 2, \ldots, t$.

If \mathbb{E} is the splitting field of f(x) in $\mathbb{F}(a_1, \ldots, a_t)$, then $\operatorname{Gal}(\mathbb{E}/\mathbb{F})$ is solvable.

Proof. By induction on t. Let $a = a_1^{n_1}$. Suppose t = 1. Then $\mathbb{F} \subseteq \mathbb{E} \subseteq \mathbb{F}(a_1)$. Let \mathbb{L} be the splitting filed of $f(x) = x^{n_1} - a$.

Then $\mathbb{F} \subseteq \mathbb{E} \subseteq \mathbb{L}$, and $\operatorname{Gal}(\mathbb{E}/\mathbb{F}) \equiv \operatorname{Gal}(\mathbb{L}/\mathbb{F})/\operatorname{Gal}(\mathbb{L}/\mathbb{E})$ is solvable.

Suppose t > 1. Let \mathbb{L} be the splitting field of $x^{n_1} - a$ over \mathbb{E} , and let $\mathbb{K} \subseteq \mathbb{L}$ be the splitting field of $x^{n_1} - a$ over \mathbb{F} .

Then \mathbb{L} is a splitting field of $(x^{n_1} - a)f(x)$ over \mathbb{F} , and \mathbb{L} is a splitting field of f(x) over \mathbb{K} .

Since $\mathbb{F}(a_1) \subseteq K$, it follows that f(x) splits in $K(a_2, \ldots, a_t)$.

By induction assumption. Gal(\mathbb{L}/\mathbb{K}) is solvable. By Theorem 32.2, Gal(\mathbb{K}/\mathbb{F}) is solvable. By Theorem 32.1, Gal(\mathbb{L}/\mathbb{F}) is solvable.

By Theorem 32.1 and Theorem 32.3, $\operatorname{Gal}(\mathbb{E}/\mathbb{F}) \equiv \operatorname{Gal}(\mathbb{L}/\mathbb{F})/\operatorname{Gal}(\mathbb{L}/\mathbb{E})$ is solvable.

イロト イヨト イヨト イヨト

臣

Insolvability of a quintic

Example Let $g(x) = 3x^5 - 15x + 5$. Then g(x) is not solvable by radicals.

Proof. By Eisenstein's Criterion, g(x) is irreducible.

Because g(-2) < 0 and g(-1) > 0, there is a root in (-2, -1).

One can check that there are zeros in (0, 1) and (1, 2).

Note that $g'(x) = 15x^4 - 15$ so that there are only three real zeros. (Five real roots will generate 4 distinct critical points.)

Now, suppose a_1, \ldots, a_5 are the five zeros. Then $\mathbb{K} = \mathbb{Q}(a_1, \ldots, a_5)$ and $\operatorname{Gal}(\mathbb{K}/\mathbb{Q}) \leq S_5$.

Observe that $[\mathbb{Q}(a_1) : \mathbb{Q}] = 5$ and $\operatorname{Gal}(\mathbb{K}/\mathbb{Q})$ contains an element order two element exchanging the two complex zeros.

So, $\operatorname{Gal}(\mathbb{K}/\mathbb{Q}) = S_5$, which is not solvable.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ◆