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Motivation

There are intimate relation between field extensions and the groups of
automorphisms on the extension fields.

Definition Let E be an extension field of F.
An autormorphism from E to E is a ring isomorphism from E to E.
The Galois group of E over F is the group of all automorphisms of E fixing F,
and is denoted by Gal(E/F).
If H is a subgroup of Gal(E/F), the set

EH = {x ∈ E : φ(x) = x for all φ ∈ H}

is the fixed field of H.
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Examples

We may consider the following examples and construct the lattice diagrams of
the Galois groups and subfields.

Example 1 If E = Q(
√

2), then Gal(E/Q) = Z2.

Example 2 If E = Q( 3√2), then Gal(E/Q) = {d}.

Example 3 If E = Q( 4√2, i) and F = Q(i), then Gal(E/F) = 〈α〉 ≡ Z4.
Let H = {e, α2}. The fixed field will be Q(

√
2, i).

Example 4 Let E = Q(
√

3,
√

5). Then Gal(E/Q) = Z2 ⊕ Z2.
It has subgroups 〈(1, 0)〉, 〈(0, 1)〉, 〈(1, 1)〉.
The corresponding fixed fields are Q(

√
3), Q(

√
5), Q(

√
15).

Example 5 Let E = Q(w, 3√2) with w = ei2π/3. Then Gal(E/Q) = S3.
It has subgroups 〈β〉, 〈α〉, 〈αβ〉, 〈αβ2〉.
The corresponding fixed fields are Q(w),Q( 3√2),Q( 3√2w),Q( 2√2w2).
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Fundamental Theorem of Galois Theory

Theorem 32.1 Let F be a finite field or a field of characteristic 0.
If E is the splitting field of f(x) ∈ F[x], then there is a one-one correspondence
between a subfield K of E containing F a subgroup
Gal(E/K) of Gal(E/F). Furthermore,

[E : K] = |Gal(E/K)| and [K : F] = |Gal(E/F)|/|Gal(E/K)|.
The index of Gal(E/K) in Gal(E/F) equals the degree of [K : F].
If K is the splitting field of some polynomial in F[x], then Gal(E/F)
is a normal subgroup of Gal(E/F) and Gal(K/F) is isomorphic to
Gal(E/F)/Gal(K/F).
The fixed field of H = Gal(E/K) is K, i.e., K = EGal(E/K).
If H is a subgroup of Gal(E/F), then H = Gal(E/EH).
The automorphism group of E fixing EH is H.

Proof. See http://www.math.uiuc.edu/̃ r-ash/Algebra/Chapter6.pdf
http://planetmath.org/proofoffundamentaltheoremofgaloistheory
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More examples

Example 6 Let E = Q(w) with w = ei2π/7. To determine the number of
subfields, not that w is the splitting field of f(x) = x7 − 1 ∈ Q[x].

Note that α : Q(w)→ Q(w) sending w to w3 has order 6.

So, [Q(w) : Q] = |Gal(Q(w)/Q)| ≥ 6.

Now, x7 − 1 = (x− 1)(x6 + · · ·+ x+ 1) and

φ(w) can only be a zero of the irreducible polynomial x6 + · · ·+ 1.

Thus, [Q(w) : Q] = 6.

Now, there are two proper subgroups, namely, 〈α2〉, 〈α3〉.

Example 7 Let E = GF (pn) of F = GF (p).

Then there is a zero b of a degree n irreducible polynomial f(x) ∈ F[x]

such that E = F(b).

Note that σ(a) = ap is a field isomorphism, and 〈σ〉 has order n.

We see that Gal(GF (pn)/GF (p)) ≡ Zn.

Chapter 32 Galois Theory



Solvability of Polynomials by radicals

Example Solve ax2 + bx+ c = 0.

Example The solution of x3 + bx+ c = 0 are

A+B, −(A+B)/2 + (A−B)
√
−3/2, −(A+B)/2− (A−B)

√
−3/2,

where

A =
3

√
−c
2 +

√
b3

27 + c2

4 and B =
3

√
−c
2 +

√
b3

27 −
c2

4 .

Definition Let F be a field and f(x) ∈ F[x]. We say that f(x) is solvable by
radicals over F if f(x) splits in some extension F(a1, . . . , an) such that ak1 ∈ F
and aki

i ∈ F(a1, . . . , ai−1) for i = 2, . . . , n.

Example 8 Let wi2π/8. Then x8 − 3 = 0 is solvable by radicals:

Solutions:
± 8√3

√
±1, ± 8√3(1±

√
−1)√

2
.
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Solvable groups
Definition A group G is solvable if there is a sequence of subgroups

{e} = H0 < H1 < · · · < Hk = G,

where Hi is normal in Hi+1 and Hi+1/Hi is Abelian.

Remark If one can express the zeros of a polynomial f(x) in radicals, then the
splitting fields of f(x) can be obtained by adjoining nith root of unity, so that
the Galois group will be a solvable group.

Theorem 32.2 Let F be a field of characteristic 0. If E is the splitting field of
xn − a ∈ F[x], then Gal(E/F) is solvable.

Proof. Let b be a zero of xn − a.

Case 1 Suppose F contains a root of unit w with wn = 1.

Then the zeros are b, bw, . . . , bwn−1 so that E = F(b).

Hence, every σ ∈ Gal(E/F) is determined by σ(b) = wjb. So,

σ1σ2(b) = wj+kb = wk+jb = σ2σ1(b)

for any σ1, σ2.
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Case 2 Suppose F does not contain a root of unity.

If b ∈ E is a zero and w is a primitive root of unity of wn = 1 in some
extension field, then b, wb ∈ E implies w ∈ E.

Then Gal(F(w)/F) is Abelian because

σiσj(w) = wij = wjiσjσi(w).

Now,
{e} ≤ Gal(E/F(w)) ≤ Gal(E/F),

and

Gal(E/F(w)) and Gal(E/F)/Gal(E/F(w)) ≡ Gal(F(w)/F)

are Abelian by Case 1, and is solvable. Thus, Gal(E/F) is solvable.
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Solvable groups and subgroups

Theorem 32.3 A factor group of a solvable group is solvable

Proof. If {e} < H0 < · · · < Hk = G, then

{e} = H0N/N < · · · < HkN/N = G/N

is the corresponding sequence of Abelian factors.

Theorem 32.4 Suppose N is a normal subgroup of G. If N and G/N are
solvable, then so is G.

Proof. Suppose

{e} = N0 < · · · < Nt = N and N/N = H0/N < · · · < Hs/N = G/N

are Ableian factors. Then N0 < N1 < . . . , Nt < H1 < · · · < Hs = G are the
Abelian factors.
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Solvable by radicals and solvable groups

Theorem 32.5 Let F be a field of characteristic 0, and f(x) ∈ F[x] splits in
F(a1, . . . , at), where an1

1 ∈ F and ani
i ∈ F(a1, . . . , ai−1) for i = 2, . . . , t.

If E is the splitting field of f(x) in F(a1, . . . , at), then Gal(E/F) is solvable.
Proof. By induction on t. Let a = an1

1 . Suppose t = 1. Then F ⊆ E ⊆ F(a1).
Let L be the splitting filed of f(x) = xn1 − a.
Then F ⊆ E ⊆ L, and Gal(E/F) ≡ Gal(L/F)/Gal(L/E) is solvable.
Suppose t > 1. Let L be the splitting field of xn1 − a over E, and let K ⊆ L
be the splitting field of xn1 − a over F.
Then L is a splitting field of (xn1 − a)f(x) over F, and L is a splitting field
of f(x) over K.
Since F(a1) ⊆ K, it follows that f(x) splits in K(a2, . . . , at).
By induction assumption. Gal(L/K) is solvable. By Theorem 32.2,
Gal(K/F) is solvable. By Theorem 32.1, Gal(L/F) is solvable.
By Theorem 32.1 and Theorem 32.3, Gal(E/F) ≡ Gal(L/F)/Gal(L/E) is
solvable.
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Insolvability of a quintic

Example Let g(x) = 3x5 − 15x+ 5. Then g(x) is not solvable by radicals.

Proof. By Eisenstein’s Criterion, g(x) is irreducible.

Because g(−2) < 0 and g(−1) > 0, there is a root in (−2,−1).

One can check that there are zeros in (0, 1) and (1, 2).

Note that g′(x) = 15x4 − 15 so that there are only three real zeros. (Five
real roots will generate 4 distinct critical points.)

Now, suppose a1, . . . , a5 are the five zeros. Then K = Q(a1, . . . , a5) and
Gal(K/Q) ≤ S5.

Observe that [Q(a1) : Q] = 5 and Gal(K/Q) contains an element order two
element exchanging the two complex zeros.

So, Gal(K/Q) = S5, which is not solvable.
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