Chapter 33 Cyclotomic Extensions

Motivation

Use Galois theory to prove the result of Gauss about the construtibility of regular n-gons.

Definition Let $w_{1}, \ldots, w_{\phi(n)}$ be the primitive roots of unity. Then $\Phi_{n}(x)=\left(x-w_{1}\right) \cdots\left(x-w_{\phi(n)}\right)$ is the nth cyclotomic polynomials over \mathbb{Q}.
Examples $x^{6}-1=(x-1)\left(x^{2}+x+1\right)(x+1)\left(x^{2}-x+1\right)$.
$\Phi_{1}(x)=x-1, \Phi_{2}(x)=x+1, \Phi_{3}(x)=x^{2}+x+1, \Phi_{6}(x)=x^{2}-x+1$.
$x^{7}-1=(x-1)\left(x^{6}+\cdots+1\right)$.
$x^{p}-1=(x-1)\left(x^{p}+\cdots+1\right)$ for any prime p.

Basic results

Theorem $33.1 x^{n}-1=\prod_{d \mid n} \Phi_{d}(x)$.
Proof. Partition the zeros of $x^{n}-1$ into those of $\Phi_{d}(x)$.
[Each collection corresponds to the set of generators of the subgroup of order n / d.]

Theorem $33.2 \Phi_{n}(x)$ is monic and has integer coefficients.
Proof. By induction assumption on n. The result holds for $n=1$.
Assume that it is true for all $\Phi_{d}(x)$ for $d<n$.
Then $g(x)=\prod_{d \mid n, d<n} \Phi_{d}(x)$ has integer coefficients.
Now, $x^{n}-1=\Phi_{n}(x) g(x)$. Applying long division, we get the result.
Remark Up to $n=15$, the coefficients of $\Phi_{n}(x)$ are always in $\{1,-1\}$.
Every integer is a coefficient of some cyclotomic polynomial.

Constructibility of n-gons

Theorem 33.3 The cyclotomic polynomials $\Phi_{n}(x)$ are irreducible over \mathbb{Z}.
Proof. Suppose $f(x)$ is a (monic) irreducible factor of $\Phi_{n}(x)$.
We only need to show that every zero of $\Phi_{n}(x)$ is a zero of $f(x)$.
It will then follow that $\Phi_{n}(x) \mid f(x)$.
Now, $\Phi_{n}(x)$ divides $x^{n}-1$. So, $x^{n}-1=f(x) g(x)$.
Suppose w is a primitive nth root of unity that is a zero of $f(x)$.
Then $f(x)$ is a minimal polynomial for w over \mathbb{Q}.
For any prime p not dividing n, we have $0=\left(w^{p}\right)^{n}-1=f\left(w^{p}\right) g\left(w^{p}\right)$.
If $f\left(w^{p}\right) \neq 0$, then $g\left(w^{p}\right)=0$ so that w is a zero of $g\left(x^{p}\right)$.
Hence, $f(x) \mid g\left(x^{p}\right)$. Else, we get an anihilating polynomial of lower degree.
So, $g\left(x^{p}\right)=f(x) h(x)$. Now, $f(x), h(x) \in \mathbb{Z}[x]$.

Let $\bar{f}(x), \bar{h}(x) \in \mathbb{Z}_{p}[x]$ obtained from $f(x), h(x)$ by changing the coefficients $c \in \mathbb{Z}$ to $c \in \mathbb{Z}_{p}$.

Then $(\bar{g}(x))^{p}=\left(\bar{g}\left(x^{p}\right)\right)=\bar{f}(x) \bar{h}(x)$.
Because $\mathbb{Z}_{p}[x]$ is a unique factorization domain, $\bar{f}(x), \bar{g}(x) \in\langle m(x)\rangle$ for some irreducible $m(x) \in \mathbb{Z}_{p}[x]$.
Thus, $\bar{g}(x)=k_{1}(x) m(x), \bar{f}(x)=k_{2}(x) m(x)$.
But then $x^{n}-1=k_{1}(x) k_{2}(x) m(x)^{2} \in \mathbb{Z}_{p}[x]$.
So, $n x^{n-1}$ and $x^{n}-1$ are nonzero polynomials in $\mathbb{Z}_{p}[x]$ have a common factor of positive degree, which is impossible.

For every prime $p \nmid n, w^{p}$ is another primitive root and is a zero of $f(x)$.
If q is a prime not dividing n, then $\left(w^{p}\right)^{q}$ is a zero of $f(x)$.
Every primitive root of unity has the form $w^{p_{1} \cdots p_{k}}$ for some primes p_{1}, \ldots, p_{k} not dividing n, we get the conclusion.

Theorem 33.4 Let $w=e^{i 2 \pi / n}$. Then $\operatorname{Gal}(\mathbb{Q}(w) / \mathbb{Q})=U(n)$ has $\phi(n)$ elements.

Proof. Every field automorphism that fixes \mathbb{Q} will send w to w^{k} for some k relatively prime to n.
Every $k \in\{1, \ldots, n\}$ relatively prime to n gives rise to such a ϕ_{k}.
So, the mapping sending $k \in U(n)$ to ϕ_{k} is a group isomorphism and bijective:

$$
\phi_{r} \phi_{s}(w)=w^{r s}=\phi_{r s}(w) ; \phi_{r}(w) \neq \phi_{s}(w) \text { if } r \neq s \text { in } U(n) .
$$

The result follows.

Theorem 33.5 An n-gons is constructible by a strightedge and compass if and only if $n=2^{k} p_{1} \cdots p_{\ell}$ for ℓ distinct odd primes of the form $2^{m}+1$.
Proof. Note that $\mathbb{Q}(\cos (2 \pi / n)) \subseteq \mathbb{Q}(w)$ with $w=e^{i 2 \pi / n}$ because $\cos (2 \pi / n)=(w+1 / w) / 2$.

Now, $\cos (2 \pi / n)$ is constructible if and only if $[\mathbb{Q}(\cos (2 \pi / n)), \mathbb{Q}]=2^{m}$.
We have

$$
\begin{aligned}
{[\mathbb{Q}(\cos 2 \pi / n): \mathbb{Q})] } & =|\operatorname{Gal}(\mathbb{Q}(w) / \mathbb{Q})| /|\operatorname{Gal}(\mathbb{Q}(w) / \mathbb{Q}(\cos 2 \pi / n))| \\
& =\phi(n) /|\operatorname{Gal}(\mathbb{Q}(w) / \mathbb{Q}(\cos 2 \pi / n))| .
\end{aligned}
$$

Now, $\sigma \in \operatorname{Gal}(\mathbb{Q}(w) / \mathbb{Q})$ implies that $\sigma(w)=w^{k}$.
If $\sigma \in \operatorname{Gal}(\mathbb{Q}(w) / \mathbb{Q}(\cos 2 \pi / n))$, then σ fixes $\cos 2 \pi / n$ so that $\cos 2 \pi / n=\phi(w+1 / w)=w^{k}+1 / w^{k}=\cos 2 k \pi / n$.

This holds if and only if $k \in\{1, n-1\}$. So,
$|\operatorname{Gal}(\mathbb{Q}(w) / \mathbb{Q}(\cos 2 \pi / n))|=2$ and $[\mathbb{Q}(\cos 2 \pi / n): \mathbb{Q})]=\phi(n) / 2$.
Thus, if an n-gon is constructible, then $\phi(n) / 2=2^{m}$.

Let $n=2^{k} p_{1}^{n_{1}} \cdots p_{t}^{n_{t}}$, where $k \geq 0$ and p_{1}, \ldots, p_{r} are distinct odd prime.
Then

$$
|U(n)|=\left|U\left(2^{k}\right)\right|\left|U\left(p_{1}^{n_{1}}\right)\right| \cdots\left|U\left(p_{t}^{n_{t}}\right)\right|=2^{k-1} \prod_{j=1}^{t} p_{j}^{n_{j}-1}\left(p_{j}-1\right)
$$

is a power of 2 , i.e., $p_{j}=2^{m_{j}}+1$ for all j.
Conversely, suppose n has the asserted form.
Then $\mathbb{Q}(w)$ is the splitting field of some $f(x) \in \mathbb{Q}[x]$ and $\phi(n)=[\mathbb{Q}(w): \mathbb{Q}]=|\operatorname{Gal}(\mathbb{Q}(w) / \mathbb{Q})|$.

Since $|\operatorname{Gal}(\mathbb{Q}(w) / \mathbb{Q})|=2^{m}$ and the group is Abelian, we have

$$
\{e\}=H_{0}<\cdots<H_{\ell}=\operatorname{Gal}(\mathbb{Q}(w) / \mathbb{Q})
$$

such that $\left|H_{i+1} / H_{i}\right|=2$.
Therefore, one gets

$$
\mathbb{Q} \subseteq \mathbb{Q}\left(\beta_{1}\right) \subseteq \mathbb{Q}\left(\beta_{1}, \beta_{2}\right) \subseteq \cdots
$$

such that β_{i} is a zero of a quadratic polynomial in $\mathbb{Q}\left(\beta_{1}, \ldots, \beta_{i-1}\right)[x]$.
Thus, $\cos (2 \pi / n))$ is constructible.

