Math 430 Homework 1 Solution based on that of Liam Bench

16.3. The zeros are $1,2,4,5$. Check: $f(1)=1^{2}+3 \cdot 1+2=6=0, f(2)=2^{2}+3 \cdot 2+2=12=0$, $f(4)=4^{2}+3 \cdot 4+2=30=0, f(5)=5^{2}+3 \cdot 5+2=42=0$.
16.4. Suppose char $R \neq \operatorname{char} R[x]$

Case 1: char $R=0$
So char $R[x] \neq 0$. So for some positive integer $n, n f(x)=0, \forall f(x) \in R[x]$. All zero degree polynomials in $R[x]$ are the same as elements in R. So $n y=0, \forall y \in R$. This a contradiction and char $R=\operatorname{char} R[x]$.
Case 2: char $R=n>0$
char $R[x]=m<n$ because $n f(x)=n a_{0}+n a_{1} x+\ldots n a_{m} x^{m}=0$ and $n a_{i}=0, a_{i} \in R$ and char $R \neq$ char $R[x]$. Take any zero degree $f(x)=a \in R[x]$ (also $a \in R$). So $m a=m f(x)=0, \forall a \in R$, a contradiction as n was chosen to be the least that fulfills this. So $R=\operatorname{char} R[x]$.

Remark One can use the fact that in a commutative ring with 1 , the characteristic is determined by the smallest positive integer m such that $m 1=0$, or $m 1 \neq 0$ for any positive integer m.
16.6 All degree two polynomails are They are $x^{2}, x^{2}+1, x^{2}+x, x^{2}+x+1$. Note that two polynomials $f(x)$ and $g(x)$ are identical functions if $f(x)-g(x)=0$ for all $x=0,1$. Thus, $f(x)-g(x)$ must have zeros 0,1 and has degree at least 2 . So, no two degree 2 polynomials $f(x)$ and $g(x)$ in $\mathbb{Z}_{2}[x]$ have such properties.
16.13. $f(x)=g(x)\left(4 x^{2}+3 x+6\right)+(6 x+2)$.
16.15. $(2 x+1)$ is its own inverse. Check: $(2 x+1)(2 x+1)=4 x^{2}+4 x+1=1$.
16.18. In fact, we can show that we can show that if R has zero divisor, there must be a degree 1 polynomial with two zeros. Suppose R has zero divisor $a b=0$ such that a, b are nonzero. Then $f(x)=a x$ is degree 1 with at least two zeros 0 and b. So, Corollary 3 will not hold.
16.20. Let B be an ideal and $B \neq\langle x\rangle$ and $B \supseteq\langle x\rangle$. So $\exists g(x) \in B$ such that $g(x) \notin\langle x\rangle$. Then $g(x)$ has nonzero constant term α, else, $g(x) \in\langle x\rangle$. Then we can find $h(x) \in\langle x\rangle$ such that $\alpha=g(x)-h(x) \in B$. If follows that $\mathbb{Q}[x]=\langle\alpha\rangle \subseteq B$.
16.24. Consider the polynomial $f(x)-g(x)$. Since $f(a)=g(a)$ for infinitely many $a, f(a)-g(a)=0$ for those a. Using the fact a polynomial of degree n over a field has at most n zeros, counting multiplicities, $f(x)-g(x)=0$ as 0 is the only polynomial with infinitely many zeros. So $f(x)=g(x)$.
16.60. By the factor theorem, we need to compute $f(-3)=(-3)^{51}$. By Fermat's little theorem, $x^{7}=x$ for all nonzero $x \in \mathbb{Z}_{7}$. So, $(-3)^{49+2}=(-3)^{49}(-3)^{2}=(-3)^{3}=6$.
16.34. Note that $f(x) \in \mathbb{Z}_{3}[x]$ satisfies $f(a)=0$ for $a=0,1,2$, if and only if $f(x)$ has linear factors $x(x-1)(x-2)$. Thus, every $g(x) \in\langle x(x-1)(x-2)\rangle$ has the desired property.

