
Math 430 Algebra II Homework 2 Solution based on that of Liam Bench

17.2. Answer: If f(x) = g(x)h(x) ∈ D[x] and f(x) ∈ F [x] is irreducible, then one of g(x) or h(x)

must be of zero degree in F [x], and thus, is a constant polynomial in D[x] such that the constant

is non-unit.

17.8. By Corollary 1 of Theorem 17.5 Zp[x]/〈f(x)〉 is a field. Every element in the field can be

written as g(x) + 〈f(x)〉 : g(x), where g(x) = an−1x
n−1 + · · ·+ a0 has degree as most n− 1. Every

ai has p choices in Zp. So, there are pn such polynomials. Moreover, if g1(x) and g2(x) in Zp[x]

has degree at most n − 1, then g1(x) − g2(x) is not a multiple of f(x) so that g1(x) + 〈f(x)〉 6=
g2(x) + 〈f(x)〉. So, there are exactly pn elements in Zp[x]/〈f(x)〉 .

Remark My hint meant to push you to show that every non-zero elements in the quotient ring

has an inverse and then conclude that it is a field.

17.12. They are all irreducible.

a. 3 - 1, 3|9, 3|12, 3|6 and 9 - 6 so by Theorem 17.4 it is irreducible over Q.

b. Looking at x4 + x + 1 over Z2 it does not have any degree 1 factors because f(0) = 1 and

f(1) = 1 and application of the Factor Theorem. Dividing x4 + x+ 1 by x2 + x+ 1 gives a nonzero

remainder. This exhausts all possible factors because if we had a degree 3 factor we would have to

have a degree 1 factor and the fact that x2 + x+ 1 is the only irreducible degree 2 polynomial over

Z2 (x2 + 1 = (x + 1)(x + 1)).

c. 3 - 1, 3|3, 3|3, and 9 - 3. By Theorem 17.4 it is irreducible over Q.

d. If we reduce the coefficients of x5 + 5x2 + 1 over Z2 we get x5 + x2 + 1. For this polynomial

f(0) = f(1) = 1 so it does not have any linear factors. Dividing x5 + x2 + 1 by x2 + x + 1 we get

a nonzero remainder. This exhausts all possible factors because if there was a degree 3 or 4 factor

then there would be a degree 1 or 2 factor.

e. First we factor out a 14, which we can do because 1
14 ∈ Q. So the polynomial can be written as

14(35x5 + 7 · 9x4 + 14 · 15x3 + 2 · 3x2 + 14 · 6x + 3). Using Theorem 17.4, 3 divides all coefficients

except the leading coefficient and 9 does not divide the last term, 3, and we know the polynomial

is irreducible.

17.16. x3 + x2 + x + 1 = (x + 1)3.

17.26. Here is a general fact we can prove. Let F be a field. Define
√
a = x if x2 − a = 0 and note

that there are at most two elements for the equation of the form ±c. Then ax2 + bx + c ∈ F[x]

with a 6= 0 has zeros in F if and only if
√
b2 − 4ac exists in F so that the solution has the form

(2a)−1(−b±
√
b2 − 4ac).

Proof. The element x ∈ F is a solution of the quadratic equation ax2 + bx + c = 0 if and

only if x2 + a−1bx + a−1c = 0 so that (x + (2a)−1b)2 = (4a)−1b2 − a−1c = (4a)−2(b2 − 4ac), i.e.,

x2 + (2a)−1b = (2a)−1
√
b2 − 4ac. The conclusion follows.

Applying this results to F = Zp, we see that the two methods of solving quadratics are consistent.

Here are two illustrations.

By substitution the zeros for 3x2 +x+4 in Z7[x] are 4 and 5. The quadratic formula also yields

these zeros. There are no zeros for 2x2 +x+ 3 in Z5[x]. The quadratic formula does not yield zeros
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because b2 − 4ac = 2 does not have a square root in Z5. The zeros to a quadratic are the solutions

to the equation ax2 + bx + c = 0.

ax2 + bx + c = 0 (1)

a(x2 + a−1bx + a−1c) = 0 (2)

a((x + 2−1a−1b)2 − (2−1a−1b)2 + a−1c) = 0 (3)

(x + 2−1a−1b)2 = ((2−1a−1b)2 − a−1c) (4)

17.28. Suppose k = 2 and p(x)|a1(x)a2(x). By Corollary 2 of Theorem 17.5 p(x) divides a1(x)

or a2(x) and the statement is true for k = 2. Suppose the statement is true for some k and

p(x)|a1(x)a2(x) . . . ak+1(x). Set g(x) = a1(x) . . . ak(x). So p(x)|g(x)ak+1(x) and as shown either

p(x)|g(x) or p(x)|ak+1(x). If p(x)|ak+1(x) we are done. If p(x)|g(x) then p(x)|a1(x) . . . ak(x). Since

the statement is true for k p(x) divides some ai(x). So by induction the theorem is true for all

k ∈ N.

17.30. By the substitution y = −x, we see that p(y) =
∑p−1

k=0 y
k is irreducible. Then p(x) is

irreducible.

Remark Here we use the fact that p(x) is irreducible if and only if p(±x+ a) is irreducible of any

a ∈ Z.

17.32. If 〈x2 + 1〉 is not prime, then g(x), h(x) /∈ 〈x2 + 1〉 and g(x)h(x) ∈ 〈x2 + 1〉 so that x2 + 1

is a factor of g(x)h(x) ∈ Q[x] ⊆ R[x], which is impossible.

The ideal 〈x2 + 1〉 is not maximal. Let 〈x2 + 1, 2〉 = {(x2 + 1)f(x) + 2g(x) : f(x), g(x) ∈ Z[x]}.
Then it is an ideal containing 〈x2 + 1〉 but not containing 1.

Remark One can also use results in Chapter 14 to get the conclusion. Namely, an ideal of a

commutative ring with unity is prime (maximal) if and only if the quotient ring is an integral

domain (field).

17.40. The polynomial that yields the same probabilities as an ordinary pair of dice factors into

x2(x+1)2(x2+x+1)2(x2−x+1)2. This is (x(x+1)(x2−x+1))2(x2+x+1)2) = (x+x4)2(x2+x+1)2 =

(x + x4)2(x4 + 2x3 + 3x2 + 2x + 1) = (x + x4)(x8 + 2x7 + 3x6 + 3x5 + 3x4 + 3x3 + 2x2 + x). These

last two polynomials correspond to the two described dice.

17.18. a. I show that there are p(p+1)/2 reducible polynomials over Zp of the form x2+ax+b. If a

polynomial of the form is reducible it can be written as (x+r)(x+s) for some p, q ∈ Zp. If r = s there

are p possibilities; if r 6= s, there are p(p− 1)/2 possibilities. Of course, any two such polynomials

are different as they will not share more than one zero. Because there are p2 monic polynomials of

degree 2, the number of monic irreducible polynomials of degree 2 is p2 − p(p + 1)/2 = p(p− 1)/2.

b. All quadratic irreducible polynomials can be written as a(x2 + bx + c) with a 6= 0 so that

x2 + bx + c is irreducible. So, there are (p− 1)2p/2 irreducible polynomial of degree 2.
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