Math 430 Homework 3

18.10 10. Let D be a PID We show that $p \in D$ is reducible if and only if $\langle p \rangle$ is not maximal.

Proof. Suppose $A = \langle p \rangle$ is not maximal. Then there is an ideal B containing A properly and not equal to D. Suppose $B = \langle q \rangle$. Then p = qr. If q is a unit, then B = D, if r is a unit, then A = B. Thus, p = qr is reducible. Conversely, if p = qr is reducible so that neither q nor r is a unit, then $B = \langle q \rangle$ properly contains A and not equal D.

- **18.12.** Let D be a principal ideal domain and I be a proper ideal of D. So $I = \langle p \rangle$. Take q as irreducible factor of p. (D is also a UFD) So p = qt and $\langle p \rangle \subset \langle q \rangle$ and $\langle q \rangle$ is maximal as proved in problem 10.
- **18.16.** Consider $\mathbb{Z}[2i] \subset \mathbb{Z}[i]$. According to example 7 $\mathbb{Z}[i]$ is a Euclidean domain and therefore a UFD. It is routine to check that $\mathbb{Z}[2i]$ is a subring with 1 and without zero divisors. So, $\mathbb{Z}[2i]$ is a subdomain. Now, $4 = 2 \cdot 2 = (2i)(-2i) \in \mathbb{Z}[2i]$. If 2 is reducible then 2 = xy and 4 = N(2) = N(x)N(y). So N(x) = 2 and $2 = a^2 + b^2$ which does not have a solution of the form $a + 2bi \in \mathbb{Z}[2i]$. So 2 is irreducible. Similarly, suppose 2i is reducible. So 2i = xy and 4 = N(2i) = N(x)N(y). So N(x) = 2 which does not have a solution. So 2i and -2i are irreducible. Finally 2 and 2i are not associates because $i \notin \mathbb{Z}[2i]$. Thus, $\mathbb{Z}[i]$ is not a UFD.
- **18.18.** First $N(7)=7^2$ so it is not prime. Suppose 7 is reducible. So 7=xy and 49=N(7)=N(x)N(y) and N(x)=7. So $7=a^2-b^26$ so that $a^2+b^2\equiv 0$ in \mathbb{Z}_7 . Now, $x\in\mathbb{Z}_7$ implies $x^2\in\{0,1,2,4\}$. So, we have $a\equiv b\equiv 0\in\mathbb{Z}_7$. But then $7=a^2-b^26$ is divisible by 49, a contradiction.
- **18.20.** In $\mathbb{Z}[\sqrt{-3}]$, $4 = 2^2 = (1 + \sqrt{-3})(1 \sqrt{-3})$. If 2 is reducible then 2 = xy and 4 = N(2) = N(x)N(y). So N(x) = 2 and $2 = a^2 + 3b^2$ which does not have a solution. So 2 is irreducible. If $1 + \sqrt{-3}$ is reducible then $1 + \sqrt{-3} = xy$ and $4 = N(1 + \sqrt{-3}) = N(x)N(y)$. So N(x) = 2 which does not have a solution. So $1 + \sqrt{-3}$ is irreducible and by a similar argument so is $1 \sqrt{-3}$. So 4 does not have a unique factorization. So $\mathbb{Z}[\sqrt{-3}]$ is not a UFD and is there fore not a PID.
- **18.26.** Note that $N((3+2\sqrt{2})^n) = (N(3+2\sqrt{2}))^n = (9-(4\cdot 2))^n = 1^n = 1$. Since N(x) = 1 if and only if x is a unit these numbers must be units.
- **18.28.** In \mathbb{Z}_{12} , if $a, b \notin \{0, 2, 4, 6, 8, 10\}$, then $ab \neq \{0, 2, 4, 6, 8, 10\}$. So, 2|(ab) implies 2|a or 2|b. Also, if $a, b \notin \{0, 3, 6, 9\}$, then $ab \neq \{0, 3, 6, 9\}$. So, 3|(ab) implies 3|a or 3|b.

Note that the units in \mathbb{Z}_{12} are: 1, 5, 7, 11. If 2 = ab is reducible, then 2|a or 2|b, and $4 \not (ab)$. So, we may assume $a \in \{2, 6, 10\}$ and $b \in \{3, 9\}$. But $2 \neq ab$ for any such choices.

On the other hand, $3 = 3 \cdot 9$ and 3 and 9 are not units so 3 is reducible.

18.34. Expanding for both pairs and reducing mod 5 gives us $3x^2 + 4x + 3$. Note that 4(3x + 2) = 2x + 3 and 4(x + 4) = 4x + 1 so both pairs are associates. So "two" factorization are the same up to permutation and associates.

Optional. Will solve it using the result in Chapter 21.