18.10 10. Let D be a PID We show that $p \in D$ is reducible if and only if $\langle p\rangle$ is not maximal.

Proof. Suppose $A=\langle p\rangle$ is not maximal. Then there is an ideal B containing A properly and not equal to D. Suppose $B=\langle q\rangle$. Then $p=q r$. If q is a unit, then $B=D$, if r is a unit, then $A=B$. Thus, $p=q r$ is reducible. Conversely, if $p=q r$ is reducible so that neither q nor r is a unit, then $B=\langle q\rangle$ properly contains A and not equal D.
18.12. Let D be a principal ideal domain and I be a proper ideal of D. So $I=\langle p\rangle$. Take q as irreducible factor of p. (D is also a UFD) So $p=q t$ and $\langle p\rangle \subset\langle q\rangle$ and $\langle q\rangle$ is maximal as proved in problem 10.
18.16. Consider $\mathbb{Z}[2 i] \subset \mathbb{Z}[i]$. According to example $7 \mathbb{Z}[i]$ is a Euclidean domain and therefore a UFD. It is routine to check that $\mathbb{Z}[2 i]$ is a subring with 1 and without zero divisors. So, $\mathbb{Z}[2 i]$ is a subdomain. Now, $4=2 \cdot 2=(2 i)(-2 i) \in \mathbb{Z}[2 i]$. If 2 is reducible then $2=x y$ and $4=N(2)=$ $N(x) N(y)$. So $N(x)=2$ and $2=a^{2}+b^{2}$ which does not have a solution of the form $a+2 b i \in \mathbb{Z}[2 i]$. So 2 is irreducible. Similarly, suppose $2 i$ is reducible. So $2 i=x y$ and $4=N(2 i)=N(x) N(y)$. So $N(x)=2$ which does not have a solution. So $2 i$ and $-2 i$ are irreducible. Finally 2 and $2 i$ are not associates because $i \notin \mathbb{Z}[2 i]$. Thus, $\mathbb{Z}[i]$ is not a UFD.
18.18. First $N(7)=7^{2}$ so it is not prime. Suppose 7 is reducible. So $7=x y$ and $49=N(7)=$ $N(x) N(y)$ and $N(x)=7$. So $7=a^{2}-b^{2} 6$ so that $a^{2}+b^{2} \equiv 0$ in \mathbb{Z}_{7}. Now, $x \in \mathbb{Z}_{7}$ implies $x^{2} \in\{0,1,2,4\}$. So, we have $a \equiv b \equiv 0 \in \mathbb{Z}_{7}$. But then $7=a^{2}-b^{2} 6$ is divisible by 49 , a contradiction.
18.20. In $\mathbb{Z}[\sqrt{-3}], 4=2^{2}=(1+\sqrt{-3})(1-\sqrt{-3})$. If 2 is reducible then $2=x y$ and $4=N(2)=$ $N(x) N(y)$. So $N(x)=2$ and $2=a^{2}+3 b^{2}$ which does not have a solution. So 2 is irreducible. If $1+\sqrt{-3}$ is reducible then $1+\sqrt{-3}=x y$ and $4=N(1+\sqrt{-3})=N(x) N(y)$. So $N(x)=2$ which does not have a solution. So $1+\sqrt{-3}$ is irreducible and by a similar argument so is $1-\sqrt{-3}$. So 4 does not have a unique factorization. So $\mathbb{Z}[\sqrt{-3}]$ is not a UFD and is there fore not a PID.
18.26. Note that $N\left((3+2 \sqrt{2})^{n}\right)=(N(3+2 \sqrt{2}))^{n}=(9-(4 \cdot 2))^{n}=1^{n}=1$. Since $N(x)=1$ if and only if x is a unit these numbers must be units.
18.28. In \mathbb{Z}_{12}, if $a, b \notin\{0,2,4,6,8,10\}$, then $a b \neq\{0,2,4,6,8,10\}$. So, $2 \mid(a b)$ implies $2 \mid a$ or $2 \mid b$. Also, if $a, b \notin\{0,3,6,9\}$, then $a b \neq\{0,3,6,9\}$. So, $3 \mid(a b)$ implies $3 \mid a$ or $3 \mid b$.

Note that the units in \mathbb{Z}_{12} are: $1,5,7,11$. If $2=a b$ is reducible, then $2 \mid a$ or $2 \mid b$, and $4 \times(a b)$. So, we may assume $a \in\{2,6,10\}$ and $b \in\{3,9\}$. But $2 \neq a b$ for any such choices.

On the other hand, $3=3 \cdot 9$ and 3 and 9 are not units so 3 is reducible.
18.34. Expanding for both pairs and reducing $\bmod 5$ gives us $3 x^{2}+4 x+3$. Note that $4(3 x+2)=$ $2 x+3$ and $4(x+4)=4 x+1$ so both pairs are associates. So "two" factorization are the same up to permutation and associates.

Optional. Will solve it using the result in Chapter 21.

