20.2. We know $\sqrt{2}+\sqrt{3} \in \mathbb{Q}(\sqrt{2}, \sqrt{3})$ because the elements of $\mathbb{Q}(\sqrt{2}, \sqrt{3})$ are of the form $a+$ $b \sqrt{2}+c \sqrt{3}+d \sqrt{2} \sqrt{3}$, where $a, b, c, d \in \mathbb{Q}$. So $\mathbb{Q}(\sqrt{2}+\sqrt{3}) \subseteq \mathbb{Q}(\sqrt{2}, \sqrt{3})$. To show $\mathbb{Q}(\sqrt{2}, \sqrt{3}) \subseteq$ $\mathbb{Q}(\sqrt{2}+\sqrt{3})$ it is sufficient to show $\sqrt{2}, \sqrt{3} \in \mathbb{Q}(\sqrt{2}+\sqrt{3})$. Well $(\sqrt{2}+\sqrt{3})(\sqrt{3}-\sqrt{2})=1$ and so $(\sqrt{2}+\sqrt{3})^{-1}=\sqrt{3}-\sqrt{2} \in \mathbb{Q}(\sqrt{2}+\sqrt{3})$. So $\sqrt{2}+\sqrt{3}+(\sqrt{3}-\sqrt{2})=2 \sqrt{3}$ and $\sqrt{3} \in \mathbb{Q}(\sqrt{2}+\sqrt{3})$. Also $-(\sqrt{3}-\sqrt{2})=\sqrt{2}-\sqrt{3}$. So $(\sqrt{2}+\sqrt{3})+(\sqrt{2}-\sqrt{3})=2 \sqrt{2}$ and $\sqrt{2} \in \mathbb{Q}(\sqrt{2}+\sqrt{3})$. Therefore $\mathbb{Q}(\sqrt{2}, \sqrt{3})=\mathbb{Q}(\sqrt{2}+\sqrt{3})$.
20.4. Note that $x^{4}+1=(x-a)\left(x-a^{3}\right)\left(x-a^{5}\right)\left(x-a^{7}\right)$ with $a=e^{i \pi / 4}=(1+i) / \sqrt{2}$. The splitting field of the polynomial is $\mathbb{Q}\left(a, a^{3}, a^{5}, a^{7}\right)=\mathbb{Q}\left(a, a^{3}\right)=\mathbb{Q}\left(i, \sqrt{2}\right.$ as $a=-a^{5}, a^{3}=-a^{7}$.
20.14. The only automorphism of $\mathbb{Q}\left(5^{\frac{1}{3}}\right)$ is the identity automorphism. We know that $\phi(1)=1$ and $\phi(0)=0$. Let $n \in \mathbb{N}$ and $n \neq 0$. We have $\phi(n)=n \phi(1)=n$ and $n \phi\left(\frac{1}{n}\right)=\phi\left(\frac{n}{n}\right)=\phi(1)=1=n \cdot \frac{1}{n}$. So $\phi\left(\frac{1}{n}\right)=\frac{1}{n}$. Hence, for any $\frac{q}{p} \in \mathbb{Q}$, we have $\phi\left(\frac{q}{p}\right)=\phi(q) \phi\left(\frac{1}{p}\right)=\frac{q}{p}$.

By properties of fields $\phi\left(5^{\frac{1}{3}}\right)$ will determine the rest of the automorphism. Let $y=\phi\left(5^{\frac{1}{3}}\right)$. Because $5=\phi(5)=\phi\left(\left(5^{\frac{1}{3}}\right)^{3}\right)=\phi\left(5^{\frac{1}{3}}\right)^{3}=y^{3}$, we have $y=5^{\frac{1}{3}}$ and this is the identity automorphism.
20.20. We can say $a c+b \in F(c)$ because of field properties. So $F(a c+b) \subseteq F(c)$. To show $F(c) \subseteq F(a c+b)$ I show that $c \in F(a c+b)$. Well $c=a^{-1}((a c+b)-b)$ and $c \in F(a c+b)$. So $F(c)=F(a c+b)$.
20.22. Since $f(x)$ and $g(x)$ are relatively prime in $F[x]$ we can write $1=f(x) q(x)+g(x) p(x)$ with $q(x), p(x) \in F[x]$. This is due to the fact that $F[x]$ is a Euclidean domain. Well $1=$ $f(x) q(x)+g(x) p(x)$ is also true in $K[x]$ and so they are relatively prime in $K[x]$.
20.28. I show that the quotient field $\mathbb{Z}_{p}(x)=\left\{f(x) / g(x) \in \mathbb{Z}_{p}[x], g(x) \neq 0\right\}$ has characteristic p and is not perfect. Let $f(x)=a_{n} x^{n}+\cdots+a_{0}$. So $p f(x) / g(x)=\left(p a_{n} x^{n}+\cdots+p a_{0}\right) / g(x)=0$. The characteristic is not less than p because it would imply the characteristic of Z_{p} is lower that p. Suppose for contradiction that $Z_{p}(x)$ is perfect. So $x=(f(x) / g(x))^{p}$ and therefore $x g(x)^{p}=f(x)^{p}$. If $\operatorname{deg}(f(x))=n$ and $\operatorname{deg}(g(x))=m$ we have $\operatorname{deg}\left(x g(x)^{p}\right)=m p+1=n p=\operatorname{deg}\left(f(x)^{p}\right)$. So $(n-m) p=1$ which is impossible. So the field is not perfect.
20.32. If $f(x)=x^{21}+2 x^{9}+1$ then $f^{\prime}(x)=21 x^{20}+18 x^{8}=0$ in \mathbb{Z}_{3}. Since $0=0 *\left(x^{21}+2 x^{9}+1\right)$, $f(x)$ is a factor of $f^{\prime}(x)$. So by Theorem $20.5 f(x)$ has a multiple zero in some extension field.
Remark In fact, $f(x)=\left(x^{7}+2 x+1\right)^{3}$.
20.38. In $\mathbb{Q}, x^{4}-6 x^{2}-7$ factors into the irreducibles $\left(x^{2}+1\right)\left(x^{2}-7\right)$. This splits in $\mathbb{Q}(i, \sqrt{7})$ as $(x+i)(x-i)(x+\sqrt{7})(x-\sqrt{7})$. So $\mathbb{Q}(i,-i, \sqrt{7},-\sqrt{7})=\mathbb{Q}(i, \sqrt{7})$ is the splitting field.
20.40. Let $f(x)$ be an irreducible polynomial over a field F and $\operatorname{deg} f(x)=n$. We know $f(x)$ splits in some field into q distinct linear factors. So $f(x)$ has q distinct zeros each of multiplicity m. So we can write $f(x)=a\left(x-a_{1}\right)^{m}\left(x-a_{2}\right)^{m} \ldots\left(x-a_{q}\right)^{m}=a x^{m q}+\ldots$ So $\operatorname{deg} f(x)=n=m q$ and $q \mid n$.

