
Algebra II Homework 4 Sample solution based on that of Liam Bench
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20.4. Note that x4 + 1 = (x−a)(x−a3)(x−a5)(x−a7) with a = eiπ/4 = (1 + i)/
√

2. The splitting
field of the polynomial is Q(a, a3, a5, a7) = Q(a, a3) = Q(i,

√
2 as a = −a5, a3 = −a7.

20.14. The only automorphism of Q(5
1
3 ) is the identity automorphism. We know that φ(1) = 1 and

φ(0) = 0. Let n ∈ N and n 6= 0. We have φ(n) = nφ(1) = n and nφ( 1
n) = φ(nn) = φ(1) = 1 = n · 1n .

So φ( 1
n) = 1

n . Hence, for any q
p ∈ Q, we have φ( qp) = φ(q)φ(1p) = q

p .

By properties of fields φ(5
1
3 ) will determine the rest of the automorphism. Let y = φ(5

1
3 ).

Because 5 = φ(5) = φ((5
1
3
)3) = φ(5

1
3 )3 = y3, we have y = 5

1
3 and this is the identity automorphism.

20.20. We can say ac + b ∈ F (c) because of field properties. So F (ac + b) ⊆ F (c). To show
F (c) ⊆ F (ac + b) I show that c ∈ F (ac + b). Well c = a−1((ac + b) − b) and c ∈ F (ac + b). So
F (c) = F (ac+ b).

20.22. Since f(x) and g(x) are relatively prime in F [x] we can write 1 = f(x)q(x) + g(x)p(x)
with q(x), p(x) ∈ F [x]. This is due to the fact that F [x] is a Euclidean domain. Well 1 =
f(x)q(x) + g(x)p(x) is also true in K[x] and so they are relatively prime in K[x].

20.28. I show that the quotient field Zp(x) = {f(x)/g(x) ∈ Zp[x], g(x) 6= 0} has characteristic p
and is not perfect. Let f(x) = anx

n + · · · + a0. So pf(x)/g(x) = (panx
n + · · · + pa0)/g(x) = 0.

The characteristic is not less than p because it would imply the characteristic of Zp is lower that p.
Suppose for contradiction that Zp(x) is perfect. So x = (f(x)/g(x))p and therefore xg(x)p = f(x)p.
If deg(f(x)) = n and deg(g(x)) = m we have deg(xg(x)p) = mp + 1 = np = deg(f(x)p). So
(n−m)p = 1 which is impossible. So the field is not perfect.

20.32. If f(x) = x21 + 2x9 + 1 then f ′(x) = 21x20 + 18x8 = 0 in Z3. Since 0 = 0 ∗ (x21 + 2x9 + 1),
f(x) is a factor of f ′(x). So by Theorem 20.5 f(x) has a multiple zero in some extension field.

Remark In fact, f(x) = (x7 + 2x+ 1)3.

20.38. In Q, x4 − 6x2 − 7 factors into the irreducibles (x2 + 1)(x2 − 7). This splits in Q(i,
√

7) as
(x+ i)(x− i)(x+

√
7)(x−

√
7). So Q(i,−i,

√
7,−
√

7) = Q(i,
√

7) is the splitting field.

20.40. Let f(x) be an irreducible polynomial over a field F and deg f(x) = n. We know f(x)
splits in some field into q distinct linear factors. So f(x) has q distinct zeros each of multiplicity
m. So we can write f(x) = a(x− a1)m(x− a2)m . . . (x− aq)m = axmq + . . . . So deg f(x) = n = mq
and q|n.
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