Math 430 Algebra II Homework 5
21.3. Note that $\mathbb{F}=\mathbb{Q}(\sqrt{2}, \sqrt[3]{2}, \sqrt[4]{2}, \ldots)$ has a basis of the form $\mathcal{B}=\{1\} \cup\left\{2^{m / n}: 1 \leq m<n\right\}$. So, every $a \in \mathbb{F}$ is a finite combination of elements in $\mathcal{B}$, and $F(a)$ is a finite extension, and hence an algebraic extension. So, $a$ is algebraic. Since it is true for all $a \in \mathbb{F}$, we see that $\mathbb{F}$ is algebraic.

Suppose $[\mathbb{F}: \mathbb{Q}]=n$ is finite. Let $m>n$. Then $\mathbb{Q}\left(2^{1 / m}\right.$ is a subspace of $\mathbb{F}$ over $\mathbb{Q}$ with dimension $m$, a contradiction.
21.6. Let $f(x), g(x)$ be irreducible over $\mathbb{F}, \operatorname{deg} f=n$ and $\operatorname{deg} g=m$ with $\operatorname{gcd}(n, m)=1$, and $f(a)=0$, $g(b)=0$ for some $a, b$ in extensions of $\mathbb{F}$. Note that $[\mathbb{F}(a, b): \mathbb{F}]=[\mathbb{F}(a, b): \mathbb{F}(a)][\mathbb{F}(a), F]$ so that $[\mathbb{F}(a, b): \mathbb{F}]$ is divisible by $n ;[\mathbb{F}(a, b): \mathbb{F}]=[\mathbb{F}(a, b): \mathbb{F}(b)][\mathbb{F}(b), F]$ so that $[\mathbb{F}(a, b): \mathbb{F}]$ is divisible by $m$. Consequently, $[\mathbb{F}(a, b): \mathbb{F}]$ is divisible by $m n$.

If $g(x) \in \mathbb{F}(a)[x]$ is reducible, and $b$ is the zero of a irreducible factor $g_{1}(x)$ of $g(x)$ in $\mathbb{F}(a)[x]$ such that degree of $g_{1}(x)$ equals $m_{1}<m$. Then $[\mathbb{F}(a, b): \mathbb{F}]=[\mathbb{F}(a, b): \mathbb{F}(a)][\mathbb{F}(a), F]=m_{1} n<m n$, which is a contradiction.
21.8. By Example $6, \mathbb{F}=\mathbb{Q}(\sqrt{3}, \sqrt{5})=\mathbb{Q}(\sqrt{3}+\sqrt{5})$ satisfies $[\mathbb{F}: \mathbb{Q}]=4$. Now, $\mathbb{Q}(\sqrt{15}) \subseteq \mathbb{Q}(\sqrt{3}, \sqrt{5})$. Because $4=[\mathbb{Q}(\sqrt{3}, \sqrt{5}): \mathbb{Q}]=[\mathbb{Q}(\sqrt{3}, \sqrt{5}): \mathbb{Q}(\sqrt{15}][\mathbb{Q}(\sqrt{15}: \mathbb{Q}]=[\mathbb{Q}(\sqrt{3}, \sqrt{5}): \mathbb{Q}(\sqrt{15}] 2$, we see that $[\mathbb{Q}(\sqrt{3}, \sqrt{5}): \mathbb{Q}(\sqrt{15}]=2$, and $\{1, \sqrt{3}+\sqrt{5}\}$ is a basis for $\mathbb{Q}(\sqrt{3}+\sqrt{5})$ over $\mathbb{Q}(\sqrt{15})$.

For the second part note that $\mathbb{Q}(\sqrt{2}) \subseteq \mathbb{Q}(\sqrt[4]{2})$ because $\sqrt{2}=(\sqrt[4]{2})^{2}$. Next $[\mathbb{Q}(\sqrt{2}, \sqrt[3]{2}, \sqrt[4]{2}): \mathbb{Q}]=$ $[\mathbb{Q}(\sqrt[3]{2}, \sqrt[4]{2}): \mathbb{Q}(\sqrt[4]{2})][\mathbb{Q}(\sqrt[4]{2}): \mathbb{Q}]$ and $[\mathbb{Q}(\sqrt[4]{2}): \mathbb{Q}]=4$. Let $[\mathbb{Q}(\sqrt[3]{2}, \sqrt[4]{2}): \mathbb{Q}]=n$. Since 4 and $[\mathbb{Q}(\sqrt[3]{2}):$ $\mathbb{Q}]=3$ are relatively prime $n$ is at least 12 . But since $[\mathbb{Q}(\sqrt[3]{2}, \sqrt[4]{2}): \mathbb{Q}(\sqrt[4]{2})]$ is at most 3 , as $(\sqrt[3]{2})^{3}-2=0$, $n$ is as most 12 . So $n=12$.
21.16. The minimal polynomial is $x^{3}-6 x-6$. First note that $2^{1 / 3}+2^{2 / 3}$ is a solution to the equation. If there was a quadratic with $2^{1 / 3}+2^{2 / 3}$ as a zero we would have $a\left(4+2 \cdot 2^{1 / 3}+2^{2 / 3}\right)+b\left(2^{1 / 3}+2^{2 / 3}\right)+c=0$. There are not any nonzero $a, b, c$ that fulfill this. So the degree 3 polynomial has minimal degree.
21.18. Up to isomorphism, we may assume that $\mathbb{E} \subseteq \mathbb{C}$. Let $\{1, \mu\}$ be a basis of $\mathbb{E}$ over $\mathbb{Q}$. Then $\mu$ is the zero of a degree 2 polynomial. We may assume that the polynomial $f(x)=a x^{2}+b x+c$ has integer coefficients. Then the $\mu=\left(-b \pm \sqrt{b^{2}-4 a c}\right) / 2 a=q_{1}+q_{2} \sqrt{d}$ for some $q_{1}, q_{2} \in \mathbb{Q}$ and $d$ is an integer not divisible by $p^{2}$ for any prime $p$. So, $\mathbb{E}=\mathbb{Q}\left(q_{1}+q_{2} \sqrt{d}\right)=\mathbb{Q}(\sqrt{d})$.
20.20. Let $[\mathbb{E}: \mathbb{F}]$ be finite and $\left\{1, a_{1}, \ldots, a_{m}\right\}$ be a basis of $\mathbb{E}$ over $\mathbb{F}$. Then $\mathbb{E}=\mathbb{F}\left(a_{1}, \ldots, a_{m}\right)$. Here we may remove redundant terms if desired.

For the second part just reverse the argument. Extending $\mathbb{F}\left(a_{1}, a_{2}, \ldots a_{i}\right)$ to $\mathbb{F}\left(a_{1}, a_{2}, \ldots a_{i+1}\right)$ increases the degree by a certain number. After adding all the $a$, get the number $[E: \mathbb{F}]$ with a finite number of factors.
20.24. In $\mathbb{Z}_{3}, x^{4}-x^{2}-2=x^{4}+2 x^{2}+=\left(x^{2}+1\right)\left(x^{2}+1\right)$. In $\mathbb{Z}_{3}(\sqrt{2})$, this becomes $(x-\sqrt{2})^{2}(x+\sqrt{2})^{2}$. So $\mathbb{Z}_{3}(\sqrt{2})=\frac{\mathbb{Z}_{3}[x]}{\left\langle x^{2}+1\right\rangle}$ is the splitting field for $x^{4}-x^{2}-2$ in $\mathbb{Z}_{3}$.
20. 26. By the quadratic formula the roots of $x^{2}+x+1$ are $a=\frac{-1}{2} \pm \frac{i \sqrt{3}}{2}$. So $i \sqrt{3} \in \mathbb{Q}(a)$. Well $\left(\frac{1}{2}+\frac{i \sqrt{3}}{2}\right) \in \mathbb{Q}(a)$ and $\left(\frac{1}{2}+\frac{i \sqrt{3}}{2}\right)^{2}=\frac{-1}{2}+\frac{i \sqrt{3}}{2}$. So $\sqrt{a} \in \mathbb{Q}(a)$ and $\mathbb{Q} \sqrt{a}=\mathbb{Q}(a)$. A similar argument is true for the other root.
20.32. Let $\operatorname{deg} f(x)=n$ and $\operatorname{deg} g(x)=m$ and suppose $f(x)$ is irreducible over $\mathbb{F}(b)$. So $[\mathbb{F}(a, b): \mathbb{F}(b)]=n$. Well $[\mathbb{F}(a, b): \mathbb{F}]=[\mathbb{F}(a, b): \mathbb{F}(b)][\mathbb{F}(b): \mathbb{F}]=n m$. If $g(x)$ was reducible over $\mathbb{F}(a)$ then $[\mathbb{F}(a, b): \mathbb{F}(a)]<m$ which is impossible since $m n=[\mathbb{F}(a, b): \mathbb{F}(a)][\mathbb{F}(a): \mathbb{F}]=[\mathbb{F}(a, b): \mathbb{F}(a)] n$. So $g(x)$ is irreducible over $\mathbb{F}(a)$. The other direction is true by symmetry.
20.38. If $\mathbb{C}$ was the splitting field of a polynomial, $f(x)$, in $\mathbb{Q}$ we can write $\mathbb{C}=\mathbb{Q}\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ where the $a_{i}$ 's are the roots of $f(x)$. So then $\mathbb{C}$ is a finite extension of $\mathbb{Q}$. But $\mathbb{C} \supseteq \mathbb{Q}(\sqrt{2}, \sqrt[3]{2}, \ldots)$ and $\mathbb{Q}(\sqrt{2}, \sqrt[3]{2}, \ldots)$ is not a finite extension as proved earlier. So $\mathbb{C}$ is not a finite extension, and therefore not a splitting field of $f(x)$ over $\mathbb{Q}$.

