## Algebra II Homework 7

Solution based on that of Liam Bench

## Chapter 24

5. Consider the function $T$ which sends the coset $x N(k)$ to the conjugate $x K x^{-1}$ of $K$. So $T(x N(K))=x K x^{-1}=y K y^{-1}=T(y N(K))$ if and only if $\left(y^{-1} x N(K)\left(x^{-1} y\right)=N(K)\right.$, i.e., $y^{-1} x \in N(x)$. Hence, $T$ is well-defined, and is one-one. For any $x K x^{-1}$, we have $T(x N(k))=$ $x K x^{-1}$. So, $T$ is surjective. Hence, the number of conjugates is $|G: N(K)|$.
6. If $H$ is normal then it is the only conjugate of itself in $G$. But $G$ is not $H$ because $H$ is proper. So $G$ is not the union of the conjugates of $H$ if $H$ is normal.

Suppose $H$ is not normal and let $k$ be the number of conjugates of $H$ in $G$. So $k=|G: N(H)|$ by problem 5 and we know $|G| /|N(H)|=|G: N(H)|$. So $|G|=k|N(H)|$. Since $H \leq N(H)$ we have $k|N(H)| \geq k|H|$. Also $k|H|>\left|H_{1} \cup \ldots \cup H_{k}\right|$ because each of the conjugates at least have the identity in common. So $|G|=k|N(H)| \geq k|H|>\left|H_{1} \cup \ldots \cup H_{k}\right|$. So $G$ cannot be the union of the conjugates of $H$.
8. Let $G$ be a non-Abelian group of order $39=3 \cdot 13$. So $|Z(G)|=1$, 3or13. If it is 3 or 13 then $|G / Z(G)|$ is prime and therefore cyclic. But then $G$ is Abelian. So $|Z(G)|=1$.

So $39=1+3 x+13 y$. So $2 \equiv y \bmod 3$ and $y \leq 2$ So $y=2$ and $x=4$. So $39=1+(4) 3+(2) 13$ is the class equation.

Now let $G$ be a non-Abelian group of order $55=5 \cdot 11$. By the argument above, $|Z(G)|=1$. So $54=5 x+11 y$. So $4 \equiv y \bmod 5$ and $y \leq 4$. So $y=4$ and $x=2$. So $55=1+(2) 5+(4) 11$ is the class equation.
18. Let $G$ be a group of order $56=2^{3}$. 7. The number of Sylow 2 -subgroups is $n_{2}=1 \bmod 2$ where $n_{2} \mid 7$. So $n_{2}=1$ or7. The number of Sylow 7 -subgroups is $n_{7}=1 \bmod 7$ where $n_{7} \mid 8$. So $n_{7}=1$ or8. If $n_{2}=1$ or $n_{7}=1$ then the corresponding Sylow subgroup is unique and therefore normal.

Suppose $n_{2}=7$ and $n_{7}=8$. The 8 Sylow 7 -subgroups only have the identity in common. If two shared an element then they would be the same because every non-identity element generates the group. This is because they have prime order. So the Sylow 7 -subgroups have $1+8 \cdot 6=49$ elements. A Sylow 2-subgroup of order 8 does not share any elements other than the identity with they Sylow 7 -subgroups. This is because the order of their elements is different. So adding 1 Sylow 2-subgroup gives us $49+7=56$ elements. The other Sylow 2 -subgroups each add at least one element because they are separate groups. So there are more than 56 elements which is a contradiction. So either $n_{2}=1$ or $n_{7}=1$ and there is a proper nontrivial normal subgroup.
20. First note there is only one Sylow 7 -subgroup because $n_{7}=1 \bmod 7$ where $n_{7} \mid 3$. This Sylow 7 -subgroup, call it $H$, is therefore normal. The number of Sylow 3 -subgroups is $n_{3}=1 \bmod 3$ where $n_{3} \mid 7$. So $n_{3}=1$, or7. If there is one Sylow 3-subgroup, call it $K$, then it is normal. So $H K$ has 21 elements and $G \approx H K \approx \mathbb{Z}_{7} \oplus \mathbb{Z}_{3}$, which is cyclic because 3 and 7 are relatively prime. But $G$ is not cyclic so there must be 7 Sylow 3 -subgroups.
26. Let $G$ be a group of order $175=5^{2} \cdot 7$. So $n_{5}=1 \bmod 5$ where $n_{5} \mid 7$. So $n_{5}=1$. Also $n_{7}=1 \bmod 7$ where $n_{7} \mid 25$. Thus, $n_{7}=1$. Let $H$ be the Sylow 5 -subgroup and $K$ be the Sylow 7-subgroup. Then $H$ and $K$ are normal. So $G \approx H K$ and $H \cup K=\{e\}$. Now, for any $h \in H, k \in K$, we have $h k h^{-1} k^{-1} \in H \cap K=\{e\}$. So, $h k=k h$ so that $h_{1} k_{1} h_{2} k_{2}=h_{1} h_{2} k_{1} k_{2}$, and thus $H K$ is Abelian. (Actually, $H K$ is isomorphic to the external direct product of $H$ and $K$. So $G \approx \mathbb{Z}_{25} \oplus \mathbb{Z}_{7}$ or $\mathbb{Z}_{5} \oplus \mathbb{Z}_{5} \oplus \mathbb{Z}_{7}$. So $G$ is a product of cyclic groups of prime power order and therefore Abelian.)

## Problem from Class Notes

1. Let $T$ be the map that maps the coset $\phi \operatorname{stab}_{G}(i)$ to $\phi(i)$. Note that $\alpha \operatorname{stab}_{G}(i)=\beta \operatorname{stab}_{G}(i)$ if and only if $\alpha^{-1} \beta \in \operatorname{stab}_{G}(i)$, i.e., $\beta(i)=\alpha(i)$. Thus, $T$ is well defined and one-to-one. To show it is onto let $k \in \operatorname{orb}_{G}(i)$. So $\alpha(i)=k$ for some $\alpha \in G$ and $T\left(\alpha \operatorname{stab}_{G}(i)=\alpha(i)=k\right.$. So $T$ is onto. As a result, there is a bijection between the number of cosets of stab ${ }_{G}(i)$, which is $|G| /\left|\operatorname{stab}_{G}(i)\right|$ and $\operatorname{orb}_{G}(i)$.
2. a) Let $h_{1} k_{1}, h_{2} k_{2} \in H K_{i}$. So $h_{1} k_{1}\left(h_{2} k_{2}\right)^{-1}=h_{1} k_{1} k_{2}^{-1} h_{2}=h_{1} k^{*} h_{2}^{-1}$. Because $H<N\left(K_{i}\right)$ we have $h K_{i}=K_{i} h$ and therefore $h_{1} k^{*} h_{2}^{-1}=h_{1} h_{2}^{-1} \hat{k} \in H K_{i}$. So $H K_{i}$ is a subgroup of $N\left(K_{i}\right)$ as $H, K_{i}<N\left(K_{i}\right)$.

Theorem 7.2 in the book gives us the second part.
b) The equation form part a) gives us $\left(|H|\left|K_{i}\right|\right) /\left|H K_{i}\right|=\left|H \cap K_{i}\right|$. First $|H|\left|K_{i}\right|=p^{2 l}$. Second $\left|H K_{i}\right|$ has at least $p^{l}$ elements because it contains $H$. It is a power of $p$ because it divides $p^{2 l}$. It is not greater than $p^{l}$ because $p^{l+1} \nmid|G|$. So $\left|H \cap K_{i}\right|=p^{l}$ and $|H|=\left|H \cap K_{i}\right|$. Also $\left|K_{i}\right|=p^{l}$ so $H \subseteq K_{i}$.
3. Let $a, b \in N(H)$. Let $a b^{-1} h b a^{-1} \in a b^{-1} H b a^{-1}$. Now, $b^{-1} H b=H$ and so $a b^{-1} h b a^{-1}=a \hat{h} a^{-1} \in$ $a H a^{-1}=H$. So $a b^{-1} H b a^{-1} \subseteq H$ and $N(H)$ is a subgroup.

The second part is proven in Problem 5.

