Algebra II Homework 7

Chapter 24

5. Consider the function T which sends the coset xN(k) to the conjugate xKx^{-1} of K. So $T(xN(K)) = xKx^{-1} = yKy^{-1} = T(yN(K))$ if and only if $(y^{-1}xN(K)(x^{-1}y) = N(K))$, i.e., $y^{-1}x \in N(x)$. Hence, T is well-defined, and is one-one. For any xKx^{-1} , we have $T(xN(k)) = xKx^{-1}$. So, T is surjective. Hence, the number of conjugates is |G:N(K)|.

6. If H is normal then it is the only conjugate of itself in G. But G is not H because H is proper. So G is not the union of the conjugates of H if H is normal.

Suppose *H* is not normal and let *k* be the number of conjugates of *H* in *G*. So k = |G : N(H)|by problem 5 and we know |G|/|N(H)| = |G : N(H)|. So |G| = k|N(H)|. Since $H \le N(H)$ we have $k|N(H)| \ge k|H|$. Also $k|H| > |H_1 \cup ... \cup H_k|$ because each of the conjugates at least have the identity in common. So $|G| = k|N(H)| \ge k|H| > |H_1 \cup ... \cup H_k|$. So *G* cannot be the union of the conjugates of *H*.

8. Let G be a non-Abelian group of order $39 = 3 \cdot 13$. So $|Z(G)| = 1, 30 \cdot 13$. If it is 3 or 13 then |G/Z(G)| is prime and therefore cyclic. But then G is Abelian. So |Z(G)| = 1.

So 39 = 1 + 3x + 13y. So $2 \equiv y \mod 3$ and $y \le 2$ So y = 2 and x = 4. So 39 = 1 + (4)3 + (2)13 is the class equation.

Now let G be a non-Abelian group of order $55 = 5 \cdot 11$. By the argument above, |Z(G)| = 1. So 54 = 5x + 11y. So $4 \equiv y \mod 5$ and $y \leq 4$. So y = 4 and x = 2. So 55 = 1 + (2)5 + (4)11 is the class equation.

18. Let G be a group of order $56 = 2^3 \cdot 7$. The number of Sylow 2-subgroups is $n_2 = 1 \mod 2$ where $n_2|7$. So $n_2 = 1$ or 7. The number of Sylow 7-subgroups is $n_7 = 1 \mod 7$ where $n_7|8$. So $n_7 = 1$ or $n_7 = 1$ or $n_7 = 1$ then the corresponding Sylow subgroup is unique and therefore normal.

Suppose $n_2 = 7$ and $n_7 = 8$. The 8 Sylow 7-subgroups only have the identity in common. If two shared an element then they would be the same because every non-identity element generates the group. This is because they have prime order. So the Sylow 7-subgroups have $1+8\cdot 6 = 49$ elements. A Sylow 2-subgroup of order 8 does not share any elements other than the identity with they Sylow 7-subgroups. This is because the order of their elements is different. So adding 1 Sylow 2-subgroup gives us 49 + 7 = 56 elements. The other Sylow 2-subgroups each add at least one element because they are separate groups. So there are more than 56 elements which is a contradiction. So either $n_2 = 1$ or $n_7 = 1$ and there is a proper nontrivial normal subgroup.

20. First note there is only one Sylow 7-subgroup because $n_7 = 1 \mod 7$ where $n_7|3$. This Sylow 7-subgroup, call it H, is therefore normal. The number of Sylow 3-subgroups is $n_3 = 1 \mod 3$ where $n_3|7$. So $n_3 = 1$, or 7. If there is one Sylow 3-subgroup, call it K, then it is normal. So HK has 21 elements and $G \approx HK \approx \mathbb{Z}_7 \oplus \mathbb{Z}_3$, which is cyclic because 3 and 7 are relatively prime. But G is not cyclic so there must be 7 Sylow 3-subgroups.

26. Let G be a group of order $175 = 5^2 \cdot 7$. So $n_5 = 1 \mod 5$ where $n_5|7$. So $n_5 = 1$. Also $n_7 = 1 \mod 7$ where $n_7|25$. Thus, $n_7 = 1$. Let H be the Sylow 5-subgroup and K be the Sylow 7-subgroup. Then H and K are normal. So $G \approx HK$ and $H \cup K = \{e\}$. Now, for any $h \in H, k \in K$, we have $hkh^{-1}k^{-1} \in H \cap K = \{e\}$. So, hk = kh so that $h_1k_1h_2k_2 = h_1h_2k_1k_2$, and thus HK is Abelian. (Actually, HK is isomorphic to the external direct product of H and K. So $G \approx \mathbb{Z}_{25} \oplus \mathbb{Z}_7 \circ \mathbb{Z}_5 \oplus \mathbb{Z}_7$. So G is a product of cyclic groups of prime power order and therefore Abelian.)

Problem from Class Notes

1. Let T be the map that maps the coset $\phi \operatorname{stab}_G(i)$ to $\phi(i)$. Note that $\alpha \operatorname{stab}_G(i) = \beta \operatorname{stab}_G(i)$ if and only if $\alpha^{-1}\beta \in \operatorname{stab}_G(i)$, i.e., $\beta(i) = \alpha(i)$. Thus, T is well defined and one-to-one. To show it is onto let $k \in \operatorname{orb}_G(i)$. So $\alpha(i) = k$ for some $\alpha \in G$ and $T(\alpha \operatorname{stab}_G(i) = \alpha(i) = k$. So T is onto. As a result, there is a bijection between the number of cosets of $\operatorname{stab}_G(i)$, which is $|G|/|\operatorname{stab}_G(i)|$ and $\operatorname{orb}_G(i)$.

2. a) Let $h_1k_1, h_2k_2 \in HK_i$. So $h_1k_1(h_2k_2)^{-1} = h_1k_1k_2^{-1}h_2 = h_1k^*h_2^{-1}$. Because $H < N(K_i)$ we have $hK_i = K_ih$ and therefore $h_1k^*h_2^{-1} = h_1h_2^{-1}\hat{k} \in HK_i$. So HK_i is a subgroup of $N(K_i)$ as $H, K_i < N(K_i)$.

Theorem 7.2 in the book gives us the second part.

b) The equation form part a) gives us $(|H||K_i|)/|HK_i| = |H \cap K_i|$. First $|H||K_i| = p^{2l}$. Second $|HK_i|$ has at least p^l elements because it contains H. It is a power of p because it divides p^{2l} . It is not greater than p^l because $p^{l+1} \nmid |G|$. So $|H \cap K_i| = p^l$ and $|H| = |H \cap K_i|$. Also $|K_i| = p^l$ so $H \subseteq K_i$.

3. Let $a, b \in N(H)$. Let $ab^{-1}hba^{-1} \in ab^{-1}Hba^{-1}$. Now, $b^{-1}Hb = H$ and so $ab^{-1}hba^{-1} = a\hat{h}a^{-1} \in aHa^{-1} = H$. So $ab^{-1}Hba^{-1} \subseteq H$ and N(H) is a subgroup.

The second part is proven in Problem 5.