Chapter 25

8. Suppose G is a simple group of order $315=3^{2} \cdot 5 \cdot 7$. Consider the number of Sylow 5 -subgroups, $n_{5} . n_{5}=1+5 k$ and divides 63. If $n_{5} \neq 1$ then L_{5}, a Sylow 5 -subgroup, is normal. So $n_{5}=21$. By problem 5 in chapter 24 , this is $\left|G: N\left(L_{5}\right)\right|$. So $\left|N\left(L_{5}\right)\right|=|G| /\left|G: N\left(L_{5}\right)\right|=15=3 \cdot 5$. So Theorem 24.6 tells us that $N\left(L_{5}\right)$ is cyclic. So $N\left(L_{5}\right)$ has an order 15 element and so does G.

Next consider the number of Sylow 3 -subgroups, n_{3}. So $n_{3}=1+3 k$ and divides 35 . So $n_{3}=7$. So $\left|G: N\left(L_{3}\right)\right|=7$. By the Embedding Theorem, G is isomorphic to a subgroup of A_{7}. So there is an order 15 element in A_{7}. Writing this permutation as a product of disjoint cycles it is either has a 15 cycle, which is impossible with 7 symbols, or a 3 and a 5 cycle, which requires at least 8 symbols. This is a contradiction so G is not simple.
14. Case 1. $p=q=r$. So $|G|=p^{3}$ and by Theorem $24.2 Z(G)$ has more than one element. If $Z(G)=G$, therefore G is Abelian. The only Abelian simple groups are \mathbb{Z}_{n} where $n=1$ or n is prime. So G is not simple. Otherwise $Z(G)$ is a proper normal subgroup of G and therefore G is not simple.

Case 2. $p=q \neq r$. So $|G|=p^{2} r$. Suppose G is simple. So $n_{p}=1+k p$ and $n_{p} \mid r$. If $n_{p}=1$, then this Sylow p-subgroup is normal. So $n_{p}=r$. Next n_{r} is p or p^{2} by the above reasoning. So $n_{r}=1+k r>r$. If $n_{r}=p$ then $p=n_{r}=1+k r>r=n_{p}>p$. This is a contradiction. So $n_{r}=p^{2}$. All of the Sylow r-subgroups have $r-1$ elements of order r. So there are $p^{2}(r-1)$ elements of order r in G. A Sylow p-subgroup has p^{2} elements. So adding these elements we have $p^{2}(r-1)+p^{2}=p^{2} r$ elements in G not including elements from the other Sylow p-subgroups. But G only has $p^{2} r$ elements. This is a contradiction and so G is not simple.

Case 3. $p>q>r$. Suppose G is simple. So $n_{p}=1+k p$ and $n_{p} \mid q r$. Because $p>q>r$ and the fact that $n_{p}=1$ would make this Sylow group normal, we have $n_{p}=q r$. Next $n_{q} \mid p r$. By the above reasoning either $n_{q}=p$ or $n_{q}=p r$. Every Sylow q-subgroup has $q-1$ elements of order q. So there are at least $p(q-1)$ elements of order G. There are $q r(p-1)$ elements of order p. Because $p(q-1)>r(q-1)$, there are another $p q r-q r(p-1)-r(q-1)=r$ elements. But there are more than r elements we have to account for because there is more than 1 Sylow r-subgroup. This is a contradiction and G is not simple.
16. Suppose H is a subgroup of S_{5} of order 40 . So either all or half of H are even permutations. Suppose all of them are even. So H is a subgroup of A_{5} of order 40. This is impossible because A_{5} has order 60. Suppose half of the elements are even permutations. So the even permutations in H form a subgroup of A_{5} of order 20. 60 does not divide the factorial of the index of this group, $(60 / 20)!=3$!. So A_{5} is not simple which is a contradiction. A similar argument holds if S_{5} has a subgroup of order 30 showing that A_{5} is not simple. So S_{5} does not have a subgroup of order 30 .
20. If $|G|=p^{k}$, the result follows form Sylow Theorem. If $q||G|$ with $q>p$ for some other prime, then $|G| \nmid p!$, a contradiction. So, G is not simple.
24. First note that we can write any transposition, $(i, i+1)$, as $(i, i+1)=(12345)^{i-1}(12)(12345)^{5-(i-1)}$. Next we can think of any 2 -cycle as a product of transpositions. A 2-cycle permutes 2 elements and keeps everything else the same. Consider the two cycle (ij) with $i<j$. We can put i in the spot of j by first applying $(i, i+1)$ then $(i+1, i+2)$ and so on until i is in the spot of j. This will leave all of the elements between i and j one lower and so j will be in the spot of $j-1$. This is because the last transposition in this process is $(j-1, j)$. So if we use transpositions to put j in the spot of i, by first applying $(j-2, j-1)$ then $(j-2, j-3)$ and so on, j will be in the spot of i and all of the elements in between will return to their original positions. So this sequence will yield an arbitrary 2 -cycle, $(i j)$. Every permutation can be written as a product of 2-cycles so the elements generate S_{5}.
26. Let $|G: H|=p$ and $|G: K|=q$. Suppose $p \neq q$ and $p<q$. So p and q divide $|G|$. So $|G|$ is of the form $p q m$. Because G is simple, $|G|$ divides $|G: H|!=p!$. So $p q m$ divides $p!$ and therefore q divides p !. This is impossible because $p<q$. So $p=q$ and $|H|=|K|$.
28. Suppose G is a simple group that has a subgroup, H, that has index 4. By the embedding theorem $|G|$ is isomorphic to a subgroup of A_{4}, so $|G|$ divides $4!/ 2=12$ and is a multiple of 4 . So $|G|$ has one of the following orders, $4,8,12$. If G has order 4 or 8 then the only prime divisor of $|G|$ is 2 . So 1 is the only divisor of $|G|$ that is $1 \bmod 2$. So G is not simple by Theorem 25.1.

If $|G|=\left|A_{4}\right|$ is 12 , then G has at least one order 4 Sylow 2-subgroup. So a Sylow 2-subgroup has index 3 in G. But 12 does not divide 3!. So G is not simple

Chapter 26

8. Let $a=\alpha \beta$ and $b=\alpha$. Note that $a=(1234)$ and $b=(12)(34)$ and $a b=(13)$. So $a^{4}=b^{2}=$ $(a b)^{2}=e$. So the set is isomorphic to a subgroup of D_{4}. The order of a is 4 , as $a^{2} \neq e$. So the set has at least 4 elements and b is not generated by a. So the set has a least 5 elements. The only subgroup of D_{4} that has at least 5 elements has 8 elements and is D_{4} itself.
9. Let $(a, b, c)=(0,1,1)$ and $(a, b, c)=(1,0,0)$. We get two matrices A and B satisfying the presentation of $D_{4}: A^{2}=B^{2}=I,(A B)^{4}=I$. [One can further check that there are 8 elements.] The results follows.
