Math 430 Homework 10 Sample solution based on that of Liam Bench Chapter 32

6. The roots of $x^4 + 1$ are $\pm \frac{\sqrt{2}}{2} \pm i \frac{\sqrt{2}}{2}$. So $E = \mathbb{Q}(\sqrt{2}, i)$. Because an automorphism must fix \mathbb{Q} , an automorphism of E, ϕ , is determined by $\phi(\sqrt{2})$ and $\phi(i)$. Note that $2 = \phi(2) = \phi(\sqrt{2}^2) = \phi(\sqrt{2})^2$ and so $\phi(\sqrt{2}) = \pm \sqrt{2}$. By a similar argument $\phi(i) = \pm i$. So there are 4 automorphisms in $\operatorname{Gal}(E/\mathbb{Q})$, the identity ε , α where $\alpha\sqrt{2} = -\sqrt{2}$ and $\alpha(i) = i$, β where $\beta(\sqrt{2}) = \sqrt{2}$ and $\beta(i) = -i$, and $\alpha\beta$. The subgroups of $\operatorname{Gal}(E/\mathbb{Q})$ are itself, $\{\varepsilon, \alpha\}, \{\varepsilon, \beta\}, \{\varepsilon, \alpha\beta\},$ and $\{\varepsilon\}$. The corresponding subfields are \mathbb{Q} , $\mathbb{Q}(i), \mathbb{Q}(\sqrt{2}), \mathbb{Q}(i\sqrt{2}), \mathbb{Q}(\sqrt{2}, i)$. In $\operatorname{Gal}(E/\mathbb{Q}), \alpha$ has the fixes field $\mathbb{Q}(i), \beta$ has the fixed field $\mathbb{Q}(\sqrt{2}, \text{ and } \alpha\beta$ has the field $\mathbb{Q}(i\sqrt{2})$. There is no automorphism whose fixed field is \mathbb{Q} .

Alternatively Any Q-automorphism of \mathbb{E} will send $w = e^{i2\pi/8}$ to w^3, w^5 or w^7 . Thus,

$$\operatorname{Gal}(\mathbb{Q}(w)/\mathbb{Q}) \sim \mathbb{Z}_2 \oplus \mathbb{Z}_2$$

8. Let $f(x) \in \mathbb{F}[x]$ and let the zeros of f(x) be $a_1, a_2, ..., a_n$. Then $\mathbb{E} = \mathbb{F}(a_1, a_2, ..., a_n)$. It suffices to prove that $\operatorname{Gal}(\mathbb{E}/\mathbb{F})$ is isomorphic to a group of permutations of a_i 's. Consider one of the roots, a_i . So $f(a_i) = 0$. So $0 = \alpha(f(a_i)) = f(\alpha(a_i))$. So $\alpha(a_i) = a_j$ for some j. The automorphisms are one-to-one so this permutes the a_i 's.

10. $\mathbb{E} = \mathbb{Q}(\sqrt{2}, \sqrt{5}) = \{a_0 + a_1\sqrt{2} + a_2\sqrt{5} + a_3\sqrt{2}\sqrt{5} \mid a_i \in \mathbb{Q}\}$. So $|\operatorname{Gal}(\mathbb{E}/\mathbb{Q})| = [\mathbb{E} : \mathbb{Q}] = 4$. Also $\mathbb{Q}(\sqrt{10}) = \{a_0 + a_1\sqrt{10} \mid a_i \in \mathbb{Q}\}$. So $|\operatorname{Gal}(\mathbb{Q}(\sqrt{10})/\mathbb{Q})| = [\mathbb{Q}(\sqrt{10}) : \mathbb{Q}] = 2$. Remark In this case, $\operatorname{Gal}(\mathbb{E}/\mathbb{Q}) \sim \mathbb{Z}_2 \oplus \mathbb{Z}_2$.

12. The zeros of $x^2 - 10x + 21 = (x - 7)(x - 3)$ are $7, 3 \in \mathbb{Q}$. So the splitting field is \mathbb{Q} and $\operatorname{Gal}(\mathbb{Q}/\mathbb{Q}) = \{\varepsilon\}.$

14. First I show there are exactly three subgroups of D_6 of order 6. Let G be one of these subgroups. So G contains an element of order 2 and an element of order 3. The only elements of order 3 in D_6 are R_{120} and R_{240} . So a subgroup of order 6 contains $\{R_0, R_{120}, R_{240}\}$. If it contains R_{60}, R_{180} , or R_{300} , then the subgroup is $\langle R_{60} \rangle$. If the subgroup contains one of the three flips through a pair of vertices, V_i , then it contains 6 elements (and contain no more) and is $\langle R_{120}, V_1 \rangle$. If it contains one of the three flips through a side, S_i , then it contains 6 elements to add and these are the only order 6 subgroups. Each of these corresponds to a subfield of E, call it L, with [E:L] = 6.

18. Note that $x^3 - 1 = (x - 1)(x^2 + x + 1)$ and the zeros are $1, \frac{-1 \pm i\sqrt{3}}{2}$. So the splitting field is $\mathbb{E} = \mathbb{Q}(i\sqrt{3})$. So the automorphisms are determined by $\phi(i\sqrt{3})$. Well $i\sqrt{3} \to \pm i\sqrt{3}$ by the same reasoning in number 6. Let α be the automorphism such that $\alpha(i\sqrt{3}) = -i\sqrt{3}$. So $\operatorname{Gal}(\mathbb{E}/\mathbb{Q}) = \{\varepsilon, \alpha\}$.

Note that the zeros of $x^3 - 2$ are $2^{\frac{1}{3}}, \frac{-2^{\frac{1}{3}} \pm 2^{\frac{1}{3}} i\sqrt{3}}{2}$. So the extension field $E = \mathbb{Q}(2^{\frac{1}{3}}, i\sqrt{3})$. So $|\operatorname{Gal}(\mathbb{Q}(2^{\frac{1}{3}}, i\sqrt{3})/\mathbb{Q})| = [\mathbb{Q}(2^{\frac{1}{3}}, i\sqrt{3}) : \mathbb{Q})] = 6$. By problem 7, the Galois group is isomorphic to a group of permutations of the zeros of $x^3 - 2$. The Galois group has 6 elements so has all permutations of the 3 zeros. So each permutation corresponds to an element of the Galois group where if a zero, a_1 , is sent to another zero, a_2 , in the permutation, then $\phi(a_1) = a_2$.

22. If $[\mathbb{E} : \mathbb{F}]$ is finite then $|\operatorname{Gal}(\mathbb{E}/\mathbb{F})|$ is finite. So the power set of $\operatorname{Gal}(\mathbb{E}/\mathbb{F})$ is finite. The set of subgroups is a subset of the power set of $\operatorname{Gal}(\mathbb{E}/\mathbb{F})$ so there are a finite number of subgroups. There is a one-to-one correspondence between the subgroups of $\operatorname{Gal}(\mathbb{E}/\mathbb{F})$ and the fields between \mathbb{E} and \mathbb{F} . So there are a finite number of fields between \mathbb{E} and \mathbb{F} .

24. First note that $\mathbb{Q}(\omega) = \{a_0 + a_1\omega + a_2\omega^2 + a_3\omega^3 : a_0, a_1, a_2, a_3 \in \mathbb{Q}\}$ because ω is a zero of the irreducible $x^4 + x^3 + x^2 + x + 1$. Thus, $a_0 + a_1\omega + a_2\omega^2 + a_3\omega^3 = \phi(a_0 + a_1\omega + a_2\omega^2 + a_3\omega^3) = a_0 + a_1\omega^4 + a_2\omega^3 + a_3\omega^2 = a_0 + a_1(-1 - \omega - \omega^2 - \omega^3) + a_2\omega^3 + a_3\omega^2$ if and only if $a_0 = a_0 - a_1, a_1 = -a_1, a_2 = a_1 + a_3, a_3 = a_2$, i.e., $a_1 = 0, a_2 = a_3$. By the Fundamental Theorem of Galois Theory $\{a_0 + a_2(\omega^2 + \omega^3) : a_0, a_2 \in \mathbb{Q}\}$ is the fixed field of $\langle \phi \rangle$.

Remark Actually, $\operatorname{Gal}(\mathbb{Q}(\omega)/\mathbb{Q})) \sim \mathbb{Z}_2 \oplus \mathbb{Z}_2$.

34. $GF(p) \approx \mathbb{Z}_p$. Note that $\phi(1) = 1$ and 1 generates \mathbb{Z}_p and therefore it generates GF(p). Let $m \in \mathbb{Z}_p$. So $\phi(m) = \phi(1_1 + 1_2 + ... + 1_m) = m\phi(1) = m$. So this corresponds to the automorphism acting on GF(p). So ϕ must act as the identity on GF(p).