Math 430 Homework 10 Sample solution based on that of Liam Bench

Chapter 32

6. The roots of $x^{4}+1$ are $\pm \frac{\sqrt{2}}{2} \pm i \frac{\sqrt{2}}{2}$. So $E=\mathbb{Q}(\sqrt{2}, i)$. Because an automorphism must fix \mathbb{Q}, an automorphism of E, ϕ, is determined by $\phi(\sqrt{2})$ and $\phi(i)$. Note that $2=\phi(2)=$ $\phi\left(\sqrt{2}^{2}\right)=\phi(\sqrt{2})^{2}$ and so $\phi(\sqrt{2})= \pm \sqrt{2}$. By a similar argument $\phi(i)= \pm i$. So there are 4 automorphisms in $\operatorname{Gal}(E / \mathbb{Q})$, the identity ε, α where $\alpha \sqrt{2}=-\sqrt{2}$ and $\alpha(i)=i, \beta$ where $\beta(\sqrt{2})=\sqrt{2}$ and $\beta(i)=-i$, and $\alpha \beta$. The subgroups of $\operatorname{Gal}(E / \mathbb{Q})$ are itself, $\{\varepsilon, \alpha\},\{\varepsilon, \beta\}$, $\{\varepsilon, \alpha \beta\}$, and $\{\varepsilon\}$. The corresponding subfields are $\mathbb{Q}, \mathbb{Q}(i), \mathbb{Q}(\sqrt{2}), \mathbb{Q}(i \sqrt{2}), \mathbb{Q}(\sqrt{2}, i)$. In $\operatorname{Gal}(E / \mathbb{Q}), \alpha$ has the fixes field $\mathbb{Q}(i), \beta$ has the fixed field $\mathbb{Q}(\sqrt{2}$, and $\alpha \beta$ has the field $\mathbb{Q}(i \sqrt{2})$. There is no automorphism whose fixed field is \mathbb{Q}.
Alternatively Any \mathbb{Q}-automorphism of \mathbb{E} will send $w=e^{i 2 \pi / 8}$ to w^{3}, w^{5} or w^{7}. Thus,

$$
\operatorname{Gal}(\mathbb{Q}(w) / \mathbb{Q}) \sim \mathbb{Z}_{2} \oplus \mathbb{Z}_{2}
$$

8. Let $f(x) \in \mathbb{F}[x]$ and let the zeros of $f(x)$ be $a_{1}, a_{2}, \ldots, a_{n}$. Then $\mathbb{E}=\mathbb{F}\left(a_{1}, a_{2}, \ldots, a_{n}\right)$. It suffices to prove that $\operatorname{Gal}(\mathbb{E} / \mathbb{F})$ is isomorphic to a group of permutations of a_{i} 's. Consider one of the roots, a_{i}. So $f\left(a_{i}\right)=0$. So $0=\alpha\left(f\left(a_{i}\right)\right)=f\left(\alpha\left(a_{i}\right)\right)$. So $\alpha\left(a_{i}\right)=a_{j}$ for some j. The automorphisms are one-to-one so this permutes the a_{i} 's.
9. $\mathbb{E}=\mathbb{Q}(\sqrt{2}, \sqrt{5})=\left\{a_{0}+a_{1} \sqrt{2}+a_{2} \sqrt{5}+a_{3} \sqrt{2} \sqrt{5} \mid a_{i} \in \mathbb{Q}\right\}$. So $|\operatorname{Gal}(\mathbb{E} / \mathbb{Q})|=[\mathbb{E}: \mathbb{Q}]=4$.

Also $\mathbb{Q}(\sqrt{10})=\left\{a_{0}+a_{1} \sqrt{10} \mid a_{i} \in \mathbb{Q}\right\}$. So $|\operatorname{Gal}(\mathbb{Q}(\sqrt{10}) / \mathbb{Q})|=[\mathbb{Q}(\sqrt{10}): \mathbb{Q}]=2$.
Remark In this case, $\operatorname{Gal}(\mathbb{E} / \mathbb{Q}) \sim \mathbb{Z}_{2} \oplus \mathbb{Z}_{2}$.
12. The zeros of $x^{2}-10 x+21=(x-7)(x-3)$ are $7,3 \in \mathbb{Q}$. So the splitting field is \mathbb{Q} and $\operatorname{Gal}(\mathbb{Q} / \mathbb{Q})=\{\varepsilon\}$.
14. First I show there are exactly three subgroups of D_{6} of order 6 . Let G be one of these subgroups. So G contains an element of order 2 and an element of order 3. The only elements of order 3 in D_{6} are R_{120} and R_{240}. So a subgroup of order 6 contains $\left\{R_{0}, R_{120}, R_{240}\right\}$. If it contains R_{60}, R_{180}, or R_{300}, then the subgroup is $\left\langle R_{60}\right\rangle$. If the subgroup contains one of the three flips through a pair of vertices, V_{i}, then it contains 6 elements (and contain no more) and is $\left\langle R_{120}, V_{1}\right\rangle$. If it contains one of the three flips through a side, S_{i}, then it contains 6 elements and is $\left\langle R_{120}, S_{1}\right\rangle$. We have exhausted all of the possible elements to add and these are the only order 6 subgroups. Each of these corresponds to a subfield of E, call it L, with $[E: L]=6$.
18. Note that $x^{3}-1=(x-1)\left(x^{2}+x+1\right)$ and the zeros are $1, \frac{-1 \pm i \sqrt{3}}{2}$. So the splitting field is $\mathbb{E}=\mathbb{Q}(i \sqrt{3})$. So the automorphisms are determined by $\phi(i \sqrt{3})$. Well $i \sqrt{3} \rightarrow \pm i \sqrt{3}$ by the same reasoning in number 6 . Let α be the automorphism such that $\alpha(i \sqrt{3})=-i \sqrt{3}$. So $\operatorname{Gal}(\mathbb{E} / \mathbb{Q})=\{\varepsilon, \alpha\}$.

Note that the zeros of $x^{3}-2$ are $2^{\frac{1}{3}}, \frac{-2^{\frac{1}{3}} \pm 2^{\frac{1}{3}} i \sqrt{3}}{2}$. So the extension field $E=\mathbb{Q}\left(2^{\frac{1}{3}}, i \sqrt{3}\right)$. So $\left.\left|\operatorname{Gal}\left(\mathbb{Q}\left(2^{\frac{1}{3}}, i \sqrt{3}\right) / \mathbb{Q}\right)\right|=\left[\mathbb{Q}\left(2^{\frac{1}{3}}, i \sqrt{3}\right): \mathbb{Q}\right)\right]=6$. By problem 7 , the Galois group is isomorphic to a group of permutations of the zeros of $x^{3}-2$. The Galois group has 6 elements so has all permutations of the 3 zeros. So each permutation corresponds to an element of the Galois group where if a zero, a_{1}, is sent to another zero, a_{2}, in the permutation, then $\phi\left(a_{1}\right)=a_{2}$.
22. If $[\mathbb{E}: \mathbb{F}]$ is finite then $|\operatorname{Gal}(\mathbb{E} / \mathbb{F})|$ is finite. So the power set of $\operatorname{Gal}(\mathbb{E} / \mathbb{F})$ is finite. The set of subgroups is a subset of the power set of $\operatorname{Gal}(\mathbb{E} / \mathbb{F})$ so there are a finite number of subgroups. There is a one-to-one correspondence between the subgroups of $\operatorname{Gal}(\mathbb{E} / \mathbb{F})$ and the fields between \mathbb{E} and \mathbb{F}. So there are a finite number of fields between \mathbb{E} and \mathbb{F}.
24. First note that $\mathbb{Q}(\omega)=\left\{a_{0}+a_{1} \omega+a_{2} \omega^{2}+a_{3} \omega^{3}: a_{0}, a_{1}, a_{2}, a_{3} \in \mathbb{Q}\right\}$ because ω is a zero of the irreducible $x^{4}+x^{3}+x^{2}+x+1$. Thus, $a_{0}+a_{1} \omega+a_{2} \omega^{2}+a_{3} \omega^{3}=\phi\left(a_{0}+a_{1} \omega+a_{2} \omega^{2}+\right.$ $\left.a_{3} \omega^{3}\right)=a_{0}+a_{1} \omega^{4}+a_{2} \omega^{3}+a_{3} \omega^{2}=a_{0}+a_{1}\left(-1-\omega-\omega^{2}-\omega^{3}\right)+a_{2} \omega^{3}+a_{3} \omega^{2}$ if and only if $a_{0}=a_{0}-a_{1}, a_{1}=-a_{1}, a_{2}=a_{1}+a_{3}, a_{3}=a_{2}$, i.e., $a_{1}=0, a_{2}=a_{3}$. By the Fundamental Theorem of Galois Theory $\left\{a_{0}+a_{2}\left(\omega^{2}+\omega^{3}\right): a_{0}, a_{2} \in \mathbb{Q}\right\}$ is the fixed field of $\langle\phi\rangle$.

Remark Actually, $\operatorname{Gal}(\mathbb{Q}(\omega) / \mathbb{Q})) \sim \mathbb{Z}_{2} \oplus \mathbb{Z}_{2}$.
34. $G F(p) \approx \mathbb{Z}_{p}$. Note that $\phi(1)=1$ and 1 generates \mathbb{Z}_{p} and therefore it generates $G F(p)$. Let $m \in \mathbb{Z}_{p}$. So $\phi(m)=\phi\left(1_{1}+1_{2}+\ldots+1_{m}\right)=m \phi(1)=m$. So this corresponds to the automorphism acting on $G F(p)$. So ϕ must act as the identity on $G F(p)$.

