The Counterfeit Coin Problem

Chi-Kwong Li Ferguson Professor of Mathematics The College of William and Mary

• Describe a logic game on finding a counterfeit coin.

- Describe a logic game on finding a counterfeit coin.
- Explain the mathematics behind.

- Describe a logic game on finding a counterfeit coin.
- Explain the mathematics behind.
- Extend the method to other situations.

- Describe a logic game on finding a counterfeit coin.
- Explain the mathematics behind.
- Extend the method to other situations.
- Explore its connection to other problems.

Problem

Suppose 27 coins are given. One of them is fake and is lighter. Find the minimum number of weighting using a balance with two pans to find the fake coin.

Problem

Suppose 27 coins are given. One of them is fake and is lighter. Find the minimum number of weighting using a balance with two pans to find the fake coin.

A Simpler Problem What about 9 coins?

Problem

Suppose 27 coins are given. One of them is fake and is lighter. Find the minimum number of weighting using a balance with two pans to find the fake coin.

A Simpler Problem What about 9 coins?

An Even Simpler Problem What about 3 coins?

Problem

Suppose 27 coins are given. One of them is fake and is lighter. Find the minimum number of weighting using a balance with two pans to find the fake coin.

A Simpler Problem What about 9 coins?

An Even Simpler Problem What about 3 coins?

Solution

If there are 3^m coins, we need only m weightings.

Problem

Suppose 27 coins are given. One of them is fake and is lighter. Find the minimum number of weighting using a balance with two pans to find the fake coin.

A Simpler Problem What about 9 coins?

An Even Simpler Problem What about 3 coins?

Solution

If there are 3^m coins, we need only m weightings.

What if there are 8 coins?

Table 1

k:	1 - 3	4 - 9	10 - 27	28 - 81	82 - 243
m:	1	2	3	4	5

Table 1

k:	1 - 3	4 - 9	10 - 27	28 - 81	82 - 243
m:	1	2	3	4	5

Table 1

1	k:	1 - 3	4 - 9	10 - 27	28 - 81	82 - 243
γ	n:	1	2	3	4	5

More generally, if there are k coins with $3^{m-1} < k \leq 3^m,$ then we need only m weightings.

Table 1

1	k:	1 - 3	4 - 9	10 - 27	28 - 81	82 - 243
γ	n:	1	2	3	4	5

More generally, if there are k coins with $3^{m-1} < k \le 3^m$, then we need only m weightings.

The general formula $\lceil \log_3(k) \rceil$.

Table 1

k:	1 - 3	4 - 9	10 - 27	28 - 81	82 - 243
m:	1	2	3	4	5

More generally, if there are k coins with $3^{m-1} < k \le 3^m$, then we need only m weightings.

The general formula $\lceil \log_3(k) \rceil$.

Deeper ideas Tree diagram/graph. Divide and conquer algorithm.

Table 1

k:	1 - 3	4 - 9	10 - 27	28 - 81	82 - 243
m:	1	2	3	4	5

More generally, if there are k coins with $3^{m-1} < k \le 3^m$, then we need only m weightings.

The general formula $\lceil \log_3(k) \rceil$.

Deeper ideas Tree diagram/graph. Divide and conquer algorithm.

Generalization Suppose one has a three pan balance. Then one can find the fake coin out of k coins by m weightings with $4^{m-1} < k \le 4^m$.

Table 1

k:	1 - 3	4 - 9	10 - 27	28 - 81	82 - 243
m:	1	2	3	4	5

More generally, if there are k coins with $3^{m-1} < k \le 3^m$, then we need only m weightings.

The general formula $\lceil \log_3(k) \rceil$.

Deeper ideas Tree diagram/graph. Divide and conquer algorithm.

Generalization Suppose one has a three pan balance. Then one can find the fake coin out of k coins by m weightings with $4^{m-1} < k \le 4^m$.

If there is a p pan balance then \dots

Suppose 12 coins are given such that one of them has a different weight. Use three weightings to find the different coin, and determine whether it is heavier or lighter.

Suppose 12 coins are given such that one of them has a different weight. Use three weightings to find the different coin, and determine whether it is heavier or lighter.

Solution

Compare $\{A1, A2, A3, A4\}$ and $\{B1, B2, B3, B4\}$.

• If equal, compare $\{A1,A2,A3\}$ and $\{C1,C2,C3\}$.

Suppose 12 coins are given such that one of them has a different weight. Use three weightings to find the different coin, and determine whether it is heavier or lighter.

Solution

- ullet If equal, compare $\{A1,A2,A3\}$ and $\{C1,C2,C3\}$.
- If $\{A1,A2,A3,A4\} > \{B1,B2,B3,B4\}$, compare $\{A1,A2,B1\}$ and $\{A3,B2,C1\}$.

Suppose 12 coins are given such that one of them has a different weight. Use three weightings to find the different coin, and determine whether it is heavier or lighter.

Solution

- ullet If equal, compare $\{A1,A2,A3\}$ and $\{C1,C2,C3\}$.
- If $\{A1,A2,A3,A4\} > \{B1,B2,B3,B4\}$, compare $\{A1,A2,B1\}$ and $\{A3,B2,C1\}$.
- $\bullet \ \ \text{If} \ \{A1,A2,B1\} > \{A3,B2,C1\} \text{, then compare} \ \{A1\} \ \text{and} \ \{A2\}.$

Suppose 12 coins are given such that one of them has a different weight. Use three weightings to find the different coin, and determine whether it is heavier or lighter.

Solution

- If equal, compare $\{A1,A2,A3\}$ and $\{C1,C2,C3\}$.
- $\label{eq:alpha} \bullet \mbox{ If } \{A1,A2,A3,A4\} > \{B1,B2,B3,B4\}, \\ \mbox{compare } \{A1,A2,B1\} \mbox{ and } \{A3,B2,C1\}.$
- If $\{A1,A2,B1\} > \{A3,B2,C1\}$, then compare $\{A1\}$ and $\{A2\}$.
- $\bullet \ \ \text{If} \ \{A1,A2,B1\} < \{A3,B2,C1\} \text{, then compare} \ \{C1\} \ \ \text{and} \ \ \{A3\}.$

Suppose 12 coins are given such that one of them has a different weight. Use three weightings to find the different coin, and determine whether it is heavier or lighter.

Solution

- ullet If equal, compare $\{A1,A2,A3\}$ and $\{C1,C2,C3\}$.
- If $\{A1,A2,B1\} > \{A3,B2,C1\}$, then compare $\{A1\}$ and $\{A2\}$.
- If $\{A1,A2,B1\} < \{A3,B2,C1\}$, then compare $\{C1\}$ and $\{A3\}$.
- $\bullet \ \ \text{If} \ \{A1,A2,B1\} = \{A3,B2,C1\}, \ \text{then compare} \ \{B3\} \ \ \text{and} \ \ \{B4\}.$

Suppose 12 coins are given such that one of them has a different weight. Use three weightings to find the different coin, and determine whether it is heavier or lighter.

Solution

Compare $\{A1, A2, A3, A4\}$ and $\{B1, B2, B3, B4\}$.

- ullet If equal, compare $\{A1,A2,A3\}$ and $\{C1,C2,C3\}$.
- $\label{eq:alpha} \bullet \mbox{ If } \{A1,A2,A3,A4\} > \{B1,B2,B3,B4\}, \\ \mbox{compare } \{A1,A2,B1\} \mbox{ and } \{A3,B2,C1\}.$
- If $\{A1, A2, B1\} > \{A3, B2, C1\}$, then compare $\{A1\}$ and $\{A2\}$.
- If $\{A1,A2,B1\} < \{A3,B2,C1\}$, then compare $\{C1\}$ and $\{A3\}$.
- $\bullet \ \ \text{If} \ \{A1,A2,B1\} = \{A3,B2,C1\} \text{, then compare} \ \{B3\} \ \ \text{and} \ \ \{B4\}.$

What if there are 13 coins?

ullet How many weightings is needed to find a different coin from k given coins.

- ullet How many weightings is needed to find a different coin from k given coins.
- What if there are two lighter / different coins?

- ullet How many weightings is needed to find a different coin from k given coins.
- What if there are two lighter / different coins?
- What if there are three lighter / different coins?

- ullet How many weightings is needed to find a different coin from k given coins.
- What if there are two lighter / different coins?
- What if there are three lighter / different coins?

The end!