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Abstract

Suppose λ1 ≥ · · · ≥ λn ≥ 0 are the eigenvalues of an n × n totally nonnegative
matrix, and λ̃1 ≥ · · · ≥ λ̃k are the eigenvalues of a k × k principal submatrix. A short
proof is given of the interlacing inequalities:

λi ≥ λ̃i ≥ λi+n−k, i = 1, . . . , k.

It is shown that if k = 1, 2, n− 2, n− 1, λi and λ̃j are nonnegative numbers satisfying
the above inequalities, then there exists a totally nonnegative matrix with eigenvalues
λi and a submatrix with eigenvalues λ̃j . For other values of k, such a result does not
hold. Similar results for totally positive and oscillatory matrices are also considered.

1 Introduction

Let A be an n×n nonnegative matrix. It is totally nonnegative (TN) if all of its minors are

nonnegative; it is totally positive (TP) if all of its minors are positive; it is oscillatory (OS)
if A is TN and Am is TP for some positive integer m. Evidently,

TP ⊆ OS ⊆ TN .

It is known (see [1, 8, 12]) that the inclusions are all strict, and that the closure of TP is
TN.

Many authors, motivated by theory and applications, have studied TN, OS, and TP
matrices (see for example [1, 3, 4, 7, 8, 9, 10, 11, 12, 15, 17]). These classes of matrices have
a lot of nice properties that resemble those of positive semi-definite Hermitian matrices. For
instance, positive semi-definite Hermitian matrices have nonnegative eigenvalues and so do
TN, OS, and TP matrices. In fact, if a matrix is TP or OS, then it has positive distinct
eigenvalues.
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Another interesting result on positive semi-definite (or general complex Hermitian or real

symmetric) matrices is the interlacing theorem (see [2, 6]) asserting that:

(I) If A is an n × n Hermitian matrix with eigenvalues λ1, . . . , λn, B is a k × k principal

submatrix of A with eigenvalues λ̃1 ≥ · · · ≥ λ̃k, then

λi ≥ λ̃i ≥ λi+n−k, i = 1, . . . , k. (1.1)

(II) If λ1 ≥ · · · ≥ λn ≥ 0 and λ̃1 ≥ · · · ≥ λ̃k satisfy (1.1), then there exists a Hermitian

matrix A with eigenvalues λi so that A has a submatrix B with eigenvalues λ̃j.

For TN, OS and TP matrices it is known [7, 16] that for principal submatrices in non-
consecutive rows and columns the interlacing results are weaker. For example, if k = n− 1
and the submatrix is neither obtained from A by removing the first row and column, nor
obtained from A by removing the last row and column, one only gets

λj−1 ≥ λ̃j ≥ λj+1, 1 ≤ j ≤ n− 1,

where λ0 = λ1.
The situation for principal submatrices lying in consecutive rows and columns is nicer.

In this case it is known [8, Theorem 14] (see also [1]) that (I) holds for TN, OS, and TP

matrices. The purpose of this paper is to study to what extent is (II) true for TN, OS,

TP matrices. In particular, we show that (II) does not hold for TP, OS, TP matrices if

k 6= 1, 2, n− 2, n− 1. Furthermore, (II) indeed holds for TN matrices if k = 1, 2, n− 2, n− 1,
for OS matrices if k = 1, n − 1, and for TP matrices if k = 1. The cases for OS matrices
when k = 2, n− 2, and for TP matrices when k = 2, n− 2, n− 1, are still open.

In the next section, we will give a short proof for the interlacing inequalities (1.1) for
TN, OS, TP matrices. We also obtain interlacing inequalities for the Schur complements of
these matrices. Section 3 will be devoted to the study of the converse theorem.

The following results will be used in our discussion. Their proofs can be found in [1].

Lemma 1.1 Let A = (aij) be an n× n TN matrix.

(a) Suppose P = (pij) is such that pij = 1 if i + j = n + 1 and 0 otherwise. Then PAP is

TN .
(b) If A is invertible and D = diag(1,−1, 1,−1, . . .), then DA−1D is TN .

(c) Suppose that A has non zero row or column and aij = 0. If j ≥ i then akl = 0 for all

(k, l) with k ≤ i and l ≥ j. If j ≤ i then akl = 0 for all (k, l) with k ≥ i and l ≤ j.

Lemma 1.2 Let A be an invertible n×n TN matrix. The following conditions are equivalent.
(a) A is OS .

(b) aij > 0 whenever |i− j| ≤ 1.

(c) A is irreducible.

(d) Neither A nor At is of the form
(

A1 0
A2 A3

)
with A1 and A3 square.

(e) An−1 is TP.
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2 Interlacing Inequalities

We give a short proof for the interlacing inequality. Our proof is more elementary compared
with those in [8, Theorem 14] and [1, Theorem 6.5].

Theorem 2.1 Let A be TN with eigenvalues λ1 ≥ · · · ≥ λn. Suppose Ã is a k× k principal

submatrix of A lying in rows and columns with consecutive indices and has eigenvalues λ̃1 ≥
· · · ≥ λ̃k. Then

λi ≥ λ̃i ≥ λi+n−k, i = 1, . . . , k.

Furthermore, if A is TP or OS , then all the inequalities are strict.

Proof. It suffices to prove the case when A is TP . One can then apply continuity arguments
to get the conclusion for TN matrices. Also, we can focus on the special case when k = n−1,
and then apply the special result (n− k) times to get the general result.

By Lemma 1.1, we may assume that Ã is obtained from A by removing the first row and
first column. By the result in [17], we can apply a sequence of elementary row operations to

A by subtracting a suitable multiple of the jth row from the (j + 1)st row, for j = 2, . . . , n,

to eliminate the nonzero entries in the (3, 1), . . . , (n, 1) positions, so that the resulting matrix

is still TN. Then, we can eliminate the nonzero entries in the (4, 2), . . . , (n, 2) positions, and

so forth, until we get a matrix with zero entries in the (i, j) positions whenever i ≥ j + 2.
Multiplying all the elementary matrices used to do the elimination, we get a matrix S of
the form [1] ⊕ S1, where S1 is lower triangular. (Note that the first row of A is unchanged

during the elimination process. This is why S is of the asserted form.) Since the inverse of

each elementary matrix used for the reduction is TN, we see that B = SAS−1 is TN. Now,

applying a similar argument to Bt, we can eliminate the nonzero entries of Bt in the (i, j)

positions whenever i ≥ j + 2. Let S̃ be the product of all elementary matrices used to do

the elimination. Then S̃ is of the form [1] ⊕ S̃, where S̃ is lower triangular. It is easy to

check that S̃BtS̃−1 has the desired zero entries in the lower triangular part, and the zero

entries in the upper triangular part of Bt are not disturbed. Hence, T = S̃(SAS−1)tS̃−1 is in
tridiagonal form. We can further apply a diagonal similarity to make T a symmetric matrix.

If we remove the first row and first column of T , we get T1 = S̃1(S1ÃS−1
1 )tS̃−1

1 . Now, by the
interlacing inequalities on real symmetric matrices, the eigenvalues of T1 interlace those of

S̃(SAS−1)tS̃−1, which are the same as those of A. The result follows. 2

Next we consider interlacing inequalities for the Schur complement of a TN matrix.

Theorem 2.2 Let A be an n × n TN matrix with eigenvalues λ1 ≥ · · · ≥ λn. Suppose
α = {1, . . . , k} or {n − k + 1, n − k + 2, . . . , n} such that A[α′] is invertible and A/α′ has

eigenvalues λ̃1 ≥ · · · ≥ λ̃k. Then

λi ≥ λ̃i ≥ λi+n−k, 1 ≤ i ≤ k.

If A is OS or TP , then all the inequalities are strict.
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Proof. First consider the case when A is OS, which may be TP. Note that A/α′ is a k × k

principal submatrix of A−1. Since B = DA−1D is OS if D = diag(1,−1, 1,−1, . . .), the

interlacing theorem holds for B and hence for A−1. It follows that

1/λi < 1/λ̃i < 1/λi+n−k, 1 ≤ i ≤ k.

Taking reciprocals we get the desired result. A continuity argument extends the result to
TN matrices. 2

3 Converse Theorems

In this section, we study the converse of the interlacing theorem. Since the interlacing
inequalities for TN , OS , and TP matrices only hold for submatrices lying in consecutive
rows and columns, we shall focus on these cases. We restate the question as follows:

Suppose we have nonnegative numbers λ1 ≥ · · · ≥ λn and λ̃1 ≥ · · · ≥ λ̃k satisfying

(1.1). Is there a TN (OS or TP ) matrix A with a k × k principal submatrix Ã lying in

rows and columns with consecutive indices so that A and Ã have eigenvalues λ1 ≥ · · · ≥ λn

and λ̃1 ≥ · · · ≥ λ̃k, respectively? (For OS and TP matrices, it is understood that all the

inequalities are strict.)

We first consider TN matrices.

Theorem 3.1 Suppose k = 1, 2, n − 2 or n − 1, and suppose λ1 ≥ · · · ≥ λn ≥ 0 and

λ̃1 ≥ · · · ≥ λ̃k ≥ 0 satisfy (1.1). Then there is a TN matrix A with a k×k principal submatrix

Ã lying in rows and columns with consecutive indices so that A and Ã have eigenvalues

λ1 ≥ · · · ≥ λn and λ̃1 ≥ · · · ≥ λ̃k, respectively.

Proof. Suppose λi and λ̃j are given that satisfy the interlacing inequalities (1.1). We may

assume that all the inequalities are strict and use continuity arguments to get the conclusion
for the general case.

For k = 1, n− 1, let A be an n×n real symmetric matrix with eigenvalues λ1 ≥ · · · ≥ λn

such that the leading k × k principal submatrix has eigenvalues λ̃1 ≥ · · · ≥ λ̃k. Then one
can apply a finite number of Householder transforms to get an invertible S such that

(a) S = [1]⊕ S1 if k = 1,

(b) S = S1 ⊕ [1] if k = n− 1,

and Â = S−1AS is tridiagonal. Applying a diagonal similarity transform to Â if necessary,

we may assume that the tridiagonal matrix Â is nonnegative. The resulting matrix is the
desired TN matrix.

Suppose k = 2. If n = 3, we are done by the previous construction as k = n − 1. If
n ≥ 4, then we can use the procedures of the preceding paragraph to construct a 2 × 2

TN matrix A1 with eigenvalues λ1, λn−1 and (2, 2) entry equal to λ̃1, and then construct a

(n−2)× (n−2) TN matrix A2 with eigenvalues λ2 ≥ · · · ≥ λn−2 ≥ λn and (1, 1) entry equal
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to λ̃2. Then the submatrix of A = A1 ⊕ A2 lying in rows and columns 2 and 3, is diagonal

and has eigenvalues λ̃1 ≥ λ̃2.

Suppose k = n − 2. Divide the numbers λ1 ≥ · · · ≥ λn and λ̃1 ≥ · · · ≥ λ̃n−2 into two
collections C1 and C2 as follows.

Step 1. Put λ1 in C1 and put λn in C2.

Step 2. For 2 ≤ i ≤ n − 2, by the interlacing inequalities λ̃i ∈ [λi+2, λi]. If λ̃i ≥ λi+1, put

both λ̃i and λi+1 in C1. Otherwise, put them in C2.

By this construction, the numbers in C1 will be of the form:

λ1 ≥ λ̃i1 ≥ λi1+1 ≥ λ̃i2 ≥ λi2+1 ≥ · · · ,

and the numbers in C2 will be of the form

λn ≤ λ̃j1 < λj1+1 ≤ λ̃j2 < λj2+1 ≤ · · · .

One can now construct A1 with eigenvalues λ1, λi1+1, λi2+1, . . . in C1 so that the submatrix

of A1 obtained by removing the first row and first column has eigenvalues λ̃i1 , λ̃i2 , . . . , in C1.
Similarly, one can construct A2 with eigenvalues λn, λj1+1, λj2+1, . . . in C2 so that the subma-

trix of A2 obtained by removing the last row and last column has eigenvalues λ̃i1 , λ̃i2 , . . . , in
C2. Let A = A1 ⊕ A2. The principal submatrix of A in rows and columns 2, . . . , n − 1 has

eigenvalues λ̃1, . . . , λ̃n−2. 2

In the cases k = 2 and k = n−2 the principal submatrix was neither leading nor trailing.
One may wonder whether it is possible to construct a TN matrix with eigenvalues λ1, . . . , λn

and a leading or trailing submatrix with eigenvalues λ̃1, . . . , λ̃k. We will see that it is not
possible. We will also show that the converse of interlacing theorem for TN matrices fails in
general if 2 < k < n− 2. We first establish the following lemma.

Lemma 3.2 Let A be an invertible TN matrix. Suppose that λ̃ is a repeated eigenvalue of

a leading principal submatrix of A. Then λ̃ is an eigenvalue of A.

Proof. We prove the result by induction. The statement is clear if n = 2. Suppose that
n > 2 and that the result is true for TN matrices of order less than n. Suppose A is an
n × n TN matrix and B is a leading principal submatrix of A with a repeated eigenvalue

λ̃. Since A is invertible, all eigenvalues of A are positive. By Theorem 2.1, B also has
positive eigenvalues and hence B is invertible. Note that B must be reducible by Lemma 1.2;

otherwise, B is oscillatory and has distinct positive eigenvalues. Suppose B =
(

B1 0
B2 B3

)
.

Then A =
(

B1 0
A2 A3

)
by Lemma 1.1 (c), and B3 is the left top corner of A3. If λ̃ is an

eigenvalue of B1, then it is an eigenvalue of A. If λ̃ is not an eigenvalue of B1 then it is a
repeated eigenvalue of B3, which is a leading principal submatrix of A3. By the induction

assumption A3 has λ̃ as an eigenvalue. 2

5



Now consider the converse theorem for TN matrices with n = 4 and k = 2 = n− 2. The

data λ1 = 4, λ2 = 3, λ3 = 2, λ4 = 1 and λ̃1 = λ̃2 = 2.5 satisfies the interlacing conditions.
Since we require the submatrix to have a repeated eigenvalue which is not an eigenvalue of
the full matrix the submatrix cannot be leading or trailing.

Theorem 3.3 Suppose n−2 > k > 2. Let λi = n−i+1 for i = 1, . . . , n. Let λ̃1 = λ̃2 = λ̃3 =

n− 5/2, and λ̃j = n− j +1/2 for j = 4, . . . , k. Then the λi’s and λ̃j’s satisfy the interlacing

inequalities (1.1), but there is no TN matrix A with eigenvalues λ1 ≥ · · · ≥ λn and a principal

submatrix B lying in consecutive rows and columns having eigenvalues λ̃1 ≥ · · · ≥ λ̃k.

Proof. Suppose k, n, λ1 ≥ · · · ≥ λn and λ̃1 ≥ · · · ≥ λ̃k satisfy the hypotheses. One readily
checks that the interlacing inequalities (1.1) are satisfied.

Suppose there is a TN matrix A with eigenvalues λ1 ≥ · · · ≥ λn and a principal submatrix

B lying in consecutive rows and columns having eigenvalues λ̃1 ≥ · · · ≥ λ̃k. Then B must be

reducible. Otherwise, B is oscillatory and has distinct eigenvalues. Suppose B =
(

B1 0
B2 B3

)
.

Then A =
(

A1 0
A2 A3

)
so that B1 is the right bottom corner of A1, and B3 is the left top

corner of A3. Moreover, either B1 or B3 has λ̃1 as a repeated eigenvalue. If B3 does,
then A3 is a TN matrix with positive eigenvalues whose leading principal submatrix has a
repeated eigenvalue. This contradicts the previous lemma. If B1 does, then PA1P is a matrix
contradicting the previous lemma, where P is the anti-diagonal matrix with all anti-diagonal
entries equal to one. 2

We have shown the converse interlacing theorem holds for TN matrices if and only if
k = 1, 2, n− 2, n− 1. Next we show that the converse interlacing theorem fails for TP and
OS matrices in general if 2 < k < n− 2. This is not an immediate consequence of the result
for TN matrices because in the TP and OS cases we assume that all the inequalities are
strict. We need the following lemma.

Lemma 3.4 Suppose A is positive and all 2 × 2 minors of A are positive. In addition, if

aii ∈ [α, β] for all i = 1, . . . , n, and ai,i+1 = ai+1,i for i = 1, . . . , n−1. Then aij < α(β/α)|i−j|

for all i 6= j.

Proof. We prove the statement by induction on |i − j|. Suppose i − j = 1. Since aiiajj >

aijaji = a2
ij, the result follows.

Suppose the result is true for |i− j| < k with 1 < k < n− 1. Consider aij with j − i = k

and the submatrix Ã =
(

ai,i+1 aij

ai+1,i+1 ai+1,j

)
. We have

α ≤ ai+1,i+1 ≤ β, ai,i+1 ≤ α(β/α), and ai+1,j ≤ α(β/α)k−1

by the induction assumption. Since α ≤ ai+1,i+1 ≤ β and det(Ã) > 0, we have

α(β/α)α(β/α)k−1 ≥ ai,i+1ai+1,j > ai+1,i+1aij ≥ αaij.
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The result follows. 2

Theorem 3.5 Suppose n − 2 > k > 2. Then there are distinct λi’s and λ̃j’s satisfy the

interlacing inequalities (1.1) strictly, such that there is no OS or TP matrix A with eigen-
values λ1 ≥ · · · ≥ λn and a principal submatrix B lying in consecutive rows and columns

having eigenvalues λ̃1 ≥ · · · ≥ λ̃k.

Proof. If the converse of interlacing theorem holds for TP or OS matrices for k with 2 <
k < n− 2, then we can extend the result to TN matrices by the following argument.

Given data λ1 ≥ · · · ≥ λn and λ̃1 ≥ · · · ≥ λ̃k satisfying the interlacing inequalities, we
can perturb the data so that strict inequalities hold, and construct OS matrices attaining

the perturbed data λi(t) and λ̃j(t). Further, we can apply a diagonal similarity to the

constructed matrix A(t) so that the (i, i + 1) and (i + 1, i) entries of these matrices are
equal for all i = 1, . . . , n − 1. By Lemma 3.4, these matrices are bounded. We can then
choose a sequence of A(t) whose eigenvalues approach to λi and a principal submatrix (with

fixed consecutive row and column indices) having eigenvalues approaching λ̃j. Since this is

a bounded sequence of matrices, we can find a limit point A, which will be a TN matrix

with the eigenvalues λ1, . . . , λn and submatrix with eigenvalues λ̃1, . . . , λ̃k. However, since
the result is not valid for TN matrices, we see that the converse of the interlacing theorem
for OS or TP matrices cannot always hold. 2

Now we turn our attention to positive results in the OS and TP cases. In such cases, we
always assume that

λ1 > · · · > λn > 0, λ̃1 > · · · > λ̃k,

λi > λ̃i > λi+n−k, i = 1, . . . , k.

Let Â be the TN tridiagonal matrix constructed in the proof of Theorem 3.1 with eigenvalues

λ1, . . . , λn with leading principal submatrix having eigenvalues λ̃1, . . . , λ̃n−1. Since Â and its
leading principal submatrix have no common eigenvalues the sub- and super-diagonal entries

of Â must be non-zero. Lemma 1.2 tells us that Â is in fact OS.
Next, we establish the converse theorem for OS and TP matrices when k = 1. Clearly,

the latter case actually covers the former case. Nevertheless, we will present very different
proofs for the two cases, in the hope that the techniques and ideas presented may be useful
in solving the unknown cases.

Here we show that one can construct an oscillatory tridiagonal with eigenvalues λ1, . . . , λn

and (1, 1) entry λ̃1 if λ1 > λ̃1 > λn. To this end, we let m be such that λm ≥ λ̃1 > λm+1,

and let η = λm + λm+1 − λ̃1 If m = 1, then η > λm+1, and one can find a sufficiently small

ε > 0 so that the numbers µ1 = η − (n− 2)ε and µi = λi+1 + ε for i = 2, . . . , n− 1, satisfy

λ1 > µ1 > λ2 > µ2 > · · · > µn−1 > λn. (3.1)

If m > 1, then η ≥ λm+1, and one can find sufficiently small ε1, ε2 > 0 so that (m− 1)ε1 =

(n −m)ε2, and the numbers µi = λi − ε1 for i = 1, . . . ,m − 1, µm = η + ε2, µi = λi+1 + ε2
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for i = m + 1, . . . , n− 1, satisfy (3.1). In both cases, we can use the result in the preceding
paragraph to conclude that there is a tridiagonal OS matrix with eigenvalues λ1, . . . , λn, and
the submatrix obtained by removing the first row and column has eigenvalues µ1, . . . , µn−1.

By construction, the (1, 1) entry of this matrix is

n∑
i=1

λi −
n−1∑
i=1

µi = λ̃1

as desired.
Finally, we show that the converse theorem holds for k = 1 for TP matrices. Given λ1 >

· · · > λn, let T (0) be symmetric, oscillatory and tridiagonal with eigenvalues λ
1/n
1 , . . . , λ1/n

n .

Let T (t) be the solution to the QR flow [5, Section 5.5]. Then, T (t) is a continuous isospectral
family of tridiagonal matrices. One can show that the sub- and super-diagonal entries of
T (t) remain non-zero for all t ∈ R, and so, by continuity these entries must be positive. Thus

T (t) is oscillatory for all t ∈ R. It is known that T (1), T (2), . . . are the iterates generated by

the QR iteration applied to T (0), thus,

lim
j→∞, j∈N

T (j) = diag(λ
1/n
1 , . . . , λ1/n

n ).

For a proof of this fact see for example [14, Theorem 8.6.1], but note that Parlett considers
the QL iteration, and orders the eigenvalues in increasing order.

Also, T (−1), T (−2), . . . are the iterates generated by the QR iteration run in reverse

applied to T (0), thus

lim
j→−∞, j∈N

T (j) = diag(λ1/n
n , . . . , λ

1/n
1 ).

See [5, Corollary 5.4] for a discussion of the QR iteration run in reverse.

Let A(t) = T (t)n. Then, since T (t) is n × n and OS, A(t) is a continuous isospectral
family of TP matrices. By the continuity of matrix multiplication

lim
j→−∞, j∈N

A(j) = diag(λn, . . . , λ1), and lim
j→∞, j∈N

A(j) = diag(λ1, . . . , λn).

So, A(t)11 takes on every value λ̃1 in (λn, λ1) as t varies over R. This establishes the converse
theorem for TP for k = 1.

Remark 3.6 One can easily obtain the results corresponding to the converse of the inter-
lacing theorem on the Schur complements of TN, OS, and TP matrices.

Remark 3.7 It is open whether the converse theorem holds for TP matrices if k = 2, n −
2, n− 1 and for OS matrices if k = 2, n− 2.
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