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Abstract

Let V be a direct sum of full matrix algebras, or the algebra of block upper triangular
matrices. Suppose r(A) is the numerical radius of A € V. We characterize mappings

f:V =V that satisty r(f(A) — f(B))=r(A— B) forall A, B€V.
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1 Introduction

Let M, be the algebra of n X n complex matrices. Suppose ny,...,n; are positive integers
such that n = ny 4+ -+ + ng. Let D(nq,...,nx) be the subalgebra of M, consisting of

matrices of the form A, @ --- @ Ay with A; € M,,; for j = 1,...,k, and let T'(ny,...,n4)
be the subalgebra of M, consisting of block upper triangular matrices A = (A;;)1<i,j<k such
that A;; € M,;. Note that up to unitary similarity (an isometric isomorphism), these are all

the finite dimensional C*-algebras and nest algebras. The numerical range and numerical

radius of A € M, are defined by

W(A) = {v"Av:v e C" |jv]| =1} and r(A)=max{|z|:z € W(A)},
respectively. A mapping f : V — V is a numerical radius isometry if
r(f(A)— f(B)) =r(A—B) forall A,BEYV.

The above definition does not require f to be linear. Nevertheless, the result of Charzynski
[1] ensures that the mapping L : V — V defined by L(A) = f(A) — f(0) is real linear such
that r(L(A)) = r(A) for all A € V. Thus, the problem of characterizing numerical radius
isometries reduces to studying real linear numerical radius isometries on V. The purpose of
this note is to characterize real linear numerical radius isometries on V.
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2 Results and Proofs

Denote by {e1, ..., e,} the standard basis for C", and {E11, E1a, ..., E,,} the standard basis
for M,,. We always assume that nq, ..., n; are positive integers such that n = ny + - - - 4 ny,
and V = D(nq,...,ng) or T'(nq,...,ng).

First, we prove that if L is a numerical radius isometry on V satisfying L(0) = 0 then

there exist complex units &, &5, ..., & such that
L(I) = £l iV ="T(ny,...,ng),

To achieve this, we need the following lemma.

Lemma 1 LetV =M, or T(ni,...,ng). Suppose H K € V are (real) linearly independent

such that r(zH + yK) < 1 whenever z,y € R satisfy 2> + y* < 1. The following conditions
are equivalent.

(a) There exists a complex unit u such that (H, K) = p(I,+:l).
(b) For any A € V there exist x,y € R such that 2*+y* =1 and r(t H+yK+A) = 14+r(A).

Proof. The implication (a) = (b) is clear. We consider the converse. Assume (b) holds.
Let Ag = (cos 6 +isinf)Ey;. Then there exist g, yp € R such that 23 4+ y7 = 1 and

r(zoH + yo K + Ag) = 1+ r(A4g) = 2.
Thus, there exists a unit vector vy such that
2 = |vg(xeH + yo K + Ag)vg| = |vg(xeH + yo K )vg| + |vgAgugl.
It follows that vy = nye; for some complex unit 7y, and
el(xgH + yoK)erw = cos @ + isinb. (1)

Suppose H and K have (1,1) entries equal to hy + thy and ki + iky, respectively, with

hl,hg,kl,k‘Q € R. Let
(kR
c=(n 1)

By (1), for any 8 € [0,27), there exists a unit vector uy € R? such that Cug = (cos §, sin 8)".

Hence C maps the unit ball in R? onto itself, and thus C is an isometry on R? and is of the

C_(cost —sint) (COSt sint )
~ \sint cost or sint —cost/’

Hence, z; = hqy + ihy is a complex unit, and ky + itk = 16127 where §; € {1, —1}. Applying

form

the same argument to the (j,7) entries of H and K, we see that they must be of the form
zj and 1d,z; with |z;| = 1 and §; € {1,—1}.



Next, we show that all the diagonal entries of H (respectively, K') are the same. With-
out loss of generality, we assume that z; = 1 and &; = 1; otherwise, replace (H, K) by
(H/z1,+K/z).

Suppose

- 1 H12 - 1 _[(12
H= <H21 sz) and K =1 <K21 —7(22)'

Observe that for any B € M,, with r(B) = 1, the largest eigenvalue of (B + B*)/2 is less
than or equal to one. As a result, if B € M, has numerical radius and (1,1) entry both
equal to one, then (B + B*)/2 = [1] & By, and hence B is of the form

Now, applying this observation to the matrix
Zyp = (cosOH + sinfK)/(cos 0 + isinb), feR,

whose (1,1) entry and numerical radius both equal 1, we see that

cosOH;y 4+ 1sin 8K, B { cosBHy +1sin 0Ky }*

cosf + 1sin b cosf + 1sin b
l.e.
cos? 0Hyy + sin® OK 5 + i cos §sin O( Ky — Hyy)
= —cos? 6H, — sin? 6K, +icosfsinb( K, — H,).
It follows that
H12 = _H;D I(IZ = —I/X’;l, I(IZ — H12 = If(;l — H;D

and hence, Ky, = Hyy = —H;, = —K3,.
Now, for each 7 > 1 and 6 € R, let

o 1 ,uj> . (1 ,LL]‘>_,'9<1 Hy >
ZG,J—C039<_ILLj zj +isind —[; 6,2 = ¢ — i zje_ia(cos(9+i5jsin9)

be the 2 x 2 submatrix of cos§H + sin § K lying in the first and jth rows and columuns.
Suppose ; # 0. If §; = —1, then there exists § € R such that (z;u;e20) # z;ji;e'??; thus

the matrix

S opi20 5 20

- _ z5€ Zili€

Zie 2oy =\ o e T
Mg

has numerical radius one and its Hermitian part has an eigenvalue larger than one, which is
a contradiction. Hence, we see that ¢; = 1 and

Zej:€i6< 1 /v‘j>‘

—Hj %
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Now, let £ € C such that p;§ = |u;| and Be = (B + Ejj) + 2E,; € V. Then r(B¢) = 2,

and there exist a unit vector (cos),sin?)’ € R? and a unit vector v € C" such that

3 = r(cosyH +sinpK + By)
= |v*(cosH + sinp K + Be)v|
= |v*(cosH + sinp K)v| + |[v* Bev|.

Note that [v*Bev| = 2 if and only if v = u(e; + €e;) for some p € C with |y = 1/v/2. Hence,
1= Jo*(cos ¢ + sin K)ol = 2|6 ( L ~ (14 2)/2]
2 —ni 7 )\
le., z; = 1.

Suppose u; = 0. For s € {1,:}, let
BS = S(Ell + E]]) + 2E1]

Then r(B,) = 2. So, there exist a unit vector (z,,ys) € R? and a unit vector v € C" such
that

3=r(zsH 4y K+ B,) = |[v*(2:H + ys K + By)v| = |[v* (2 H + ys K)v| + [v" Byv].

Note that |v*B,v| = 2 if and only if v = v, = u(e; + se;) for some p € C with |u| = 1/v/2.
Putting s = 1, we have

L =vi(xH+ y K)vs = {(ws + 1ys) + z;(xs + 105y5)}/2.

Hence the two complex units (z,+1ys), z;(2s+10;ys) must both equal one, i.e., (x4, ys) = (1,0)
and z; = 1. Putting s = 1, we have

i =v(xsH 4+ ys K)vs = {(x5 4 1ys) + (x5 + 1d;y5) } /2.

Thus, (2s,ys) = (0,1) and the (j,7) entry of K must be .

Now, we see that all diagonal entries of H equal one. Since r(H) = 1, it follows that
(H + H*)/2 = I. Furthermore, the skew-Hermitian part (H — H*)/(2¢) must be zero,
otherwise, there exists a unit vector v € C" such that v*(H — H*)v = id for some nonzero
d € R and thus |[v*Hv| = /1 +d*/4 > 1 =r(H). Thus, H = I. We have also proved that

all diagonal entries of K equal 7, and consequently, K = 1. |

Corollary 2 Let V = D(ny,...,ng). Suppose H K € V are (real) linearly independent

such that r(xH + yK) < 1 whenever z,y € R satisfy 2* + y*> < 1. The following conditions
are equivalent.

(a) Forany A € V there exist v,y € R such that 2*+y*> =1 and r(t H+yK+A) = 1+r(A).
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(b) There exist complex units pi1,. .., pux, and dy, ..., dy € {i,—i} such that
(H,K) = (u1L, & & ey, dipn Iny & -+ - B dipr L)

Proof. Suppose H = Hy @ -+ @ Hy and K = K; @ --- @ K}, such that H;, K; € M,,
for y = 1,...,k. Suppose (a) holds. We can specialize condition (a) to those matrices
A=A @ P Ar € D(n1,...,ng) such that A; = 0,, except for + = j. Then we can
apply Lemma 1 to conclude that there exist a complex unit p; and d; € {i,—:} such that
(Hj, K;) = (pjln;, djp;I,;). Thus, condition (b) holds.

Conversely, suppose (b) holds. Then for any A = Ay & --- & Ay € D(ny,...,nk), there
exists j € {1,...,k} such that r(4) = r(A4,). By Lemma 1, there exist z,y € R with
z? 4+ y? = 1 such that

L+r(A)=14r(Aj) =r(zHj+yK; + Aj) <r(zH+yK+ A) <1+r(A).

Thus, condition (a) holds. [ ]

Corollary 3 Let V = D(nq,...,nx) or T'(ny,...,nk). Suppose L is a real linear numerical
radius isometry on V.

(a) If V = T(ny,...,nk), then there exists a complex unit p such that (L(I),L(iI)) =
u(1, +iI).

(b) IfV = D(ni,...,ng), then there exist complex units pi1, ..., pg, and dy, ..., dp € {1,—1}
such that (L(I),L(:I)) = (p11n, & -+ & pln, dipin Ln, & -+ & dpprly,).

Proof. Suppose V = T'(ny,...,ni). Note that (H, K') = (I,:]) satisfies Lemma 1 (b). By
the assumption on L, the pair of matrices (L(I), L(:])) also satisfies the same condition, and
hence has the form given in Lemma 1 (a). One can use Corollary 2 and a similar argument
to get the result if V.= D(ny,...,ng). ]

We need one more lemma to prove our main result.

Lemma 4 Let V = D(ny,...,nk) or T'(ny,...,nk). Suppose F : V — K(C), where £(C)

1s the set of nonempty compact conver subsets of C such that
FlaA+pBI)=aF(A)+ 3, for any a,p € C,

and suppose f : V. — R is defined by f(A) = max{|z| : z € F(A)}. If L is a real linear
map L on V satisfying (L(I),L(:I)) = (I,iI) and f(L(A)) = f(A) for all A € V, then
F(L(A))=F(A) forall Ac V.

Proof. Let L satisfy the hypotheses. Suppose A € V is such that F(L(A)) # F(A). If
there is u € F(L(A))\ F(A), then there exists n € C such that

FIL(A=nD)) = |p—nl> max, |z —n| = f(A—nI),
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which is a contradiction. By reversing the roles of the sets we get a contradicition also in

the case when there is u € F(A)\ F(L(A)). |
For a real linear operator L : V — V define L : V — V by L(A) = L(A) for all A€ V.

With this notation, we are now ready to present our main result.

Theorem 5 (a) A real linear map L : T(ny,...,ng) — T(ny,...,ng) is a numerical ra-
dius isometry if and only if there exists a complex unit € such that (L or €L preserves the
numerical range.

(b) A real linear map L : D(ny,...,ng) = D(nq,...,nk) is a numerical radius isometry if

and only if there exists a mapping S : D(ny,...,ng) = D(ny,...,ng) defined by

A @ - DA — S1(A1) B - B Sk(Ar)

such that S o L preserves the numerical range, where S; : My, — M, has the form

Aj = pAj, or  AjpiA;
for some complex unit ;.

Proof. The (<) is clear for both (a) and (b). For the converse, suppose L is a real linear
numerical radius isometry on T'(nq,...,ng). By Corollary 3, there exists a complex unit p
such that (L(I), L(:1)) = pu(I,£:I). Thus, gL or L satisfy the hypothesis of Lemma 4 with
F(A) = W(A). The result follows. Suppose L is a real linear numerical radius isometry on
D(ny,...,ng). By Corollary 3, (L(I),L(:I)) = (p11n, &+ B pLny,, dipir Ly & -+ - & dipin1n,,).
So, there exists a mapping of the form S such that S o L satisfy the hypothesis of Lemma 4
with F(A) = W(A). The result follows. |

In [3], the author characterized additive maps which preserve the numerical range on
different types of matrix algebras. We can use the results in [3] to give explicit description
of real linear numerical radius isometries on V' = D(ny,...,ng) or T(ny,...,ng). For easy
reference, we list the results explicitly in the following. Interested readers can read [3]
for details. For simplicity and clarity, we present the results for M,,, D(nq,...,n), T, =

T(1,...,1) - the algebra of upper triangular matrices in M, and T'(ny,...,nk), in separate
corollaries.

By Theorem 5 (b) and [3, Corollary], we have the following.

Corollary 6 Suppose L is a real linear numerical radius isometry on M,,. Then there exist
a compler unit £ and unitary U such that L is of one of the forms:

A s EUAU, A s (U AW, A s EUAU, A s EUAT. 2)

It i1s interesting to note that the first two types of mappings in 2 are complex linear
numerical radius isometries (see [4]), and the last two types are just a composition of the

first two types with complex conjugation, i.e., the mapping A — A.
By Theorem 5 (b) and [3, Theorem 8], we have the following.
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Corollary 7 Suppose L is a real linear numerical radius isometry on D(nq,...,ny). Then
there exists a permutation (ji,...,Jk) of (1,...,k) satisfying ny = n;j, fort =1,... k, such
that L has the form

A @S A Li(Ay) @ @ Li(4,),

where each Lj : M,,; — M, has one of the forms in (2) for some unitary U € M,;.
The structure of numerical range preservers on T,, is more complicated. Lesnjak [3]

showed that the set of additive numerical range preservers on T, is a group generated by
operators of the forms:

(i) A~ DAD* for some diagonal unitary matrix D € M,,

(i) A— EA'E with £ =3, 411 Ejx € M, and

ayr Gz o Qg air  Aip e ar?

0 0 .

(iii) f Al > : BB with =3, Ejx € My_1.
0 0

By Theorem 5 (a) and [3, Theorem 11], we have the following.

Corollary 8 The set of real linear numerical radius isometries on T,, is a group generated
by operators of the forms (1) — (iii),

(iv) A pA for some complex unit p, and

(v) A A,

Note that mappings of the form (i), (ii) and (iv) generate the group of complex linear
isometries for the numerical radius. The mapping in (v) is a natural addition to the group
of real linear isometries. It is surprising and interesting to see that the mapping in (iii) also
preserves the numerical radius, and it is the only additional mapping needed to generate the
1sometry group.

The description of the group of real linear isometries on T'(ny,...,nk) is more delicate.

First, one may relax the mapping in (i) to the following:
(i) A U*AU for some unitary U € T'(ny, ..., ng).

Next, the mapping in (ii) does not always work on T'(ni,...,n) without additional
assumptions on nq,...,ng:

(i) A EA'E with E =3, 4.0y Eji € M, provided nj = ngyy—; for j=1,... k.

Similarly, a mapping of the form (iii) does not work on T'(ny, ..., n;) without additional
assumption on nq,...,n; and suitable modification:



(iii’) there exists 1 < r < k such that n; = n,41-;j for y = 1,...,r, and n,4; = ny4q1-; for

Jj=1,...,k—r,so that one can consider the mapping on T'(ni,...,ny) defined by

(X Y>'_><E1XtE1 E1?E2>
0 Z 0 EyZ'Ey )’

where X € T'(ny,...,n,), Z € T(nyg1,-..,nx), By and E, are square zero-one matrices
of appropriate sizes having ones on the anti-diagonals.

By Theorem 5 (a) and [3, Theorem 18], we have the following.

Corollary 9 The set of real linear numerical radius isometries on T(ny,...,ng) is a group

generated by operators of the forms (i7), (ii’), (iii’), (iv) and (v).

We note that our investigation is just a special case of a more general problem, namely,
studying mappings f on a normed vector space V' that satisfy ||f(X) — f(Y)| = [|X = Y|
for all X,Y € V. If V is finite dimensional, then we can assume with no loss of generality
that f(0) = 0, and thus f is real linear. If V is a complex linear space, it is natural to
ask whether real linear isometries are either complex linear isometries or complex linear
isometries composed by the complex conjugation. Our results show that this may or may
not be true. It is interesting to identify those complex normed spaces having this property.

We thank Professor G. Lesnjak for showing us the preprint [3].
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