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Abstract

We determine the conditions for uniqueness of the solutions of several completion
problems including the positive semi-definite completion, the distance matrix comple-
tion, and the contractive matrix completion. The conditions depend on the existence
of a positive semi-definite matrix satisfying certain linear constraints. Numerically,
such conditions can be checked by existing computer software such as semi-definite
programming routines. Some numerical examples are given to illustrate the results,
and show that some results in a recent paper of Alfakih are incorrect. Discrepancies
in the proof of Alfakih are explained.
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1 Introduction

In the study of completion problems, one considers a partially specified matrix and tries to
fill in the missing entries so that the resulting matrix has some specific properties such as
being invertible, having a specific rank, being positive semi-definite, etc. One can ask the
following general problems:

(a) Determine whether a completion with the desired property exists.

(b) Determine all completions with the desired property.

(c) Determine whether there is a unique completion with the desired property.

(d) Determine the “best” completion with a desired property under certain criteria.

See [5] for general background of completion problems.

In [1], the author raised the problem of determining the condition on an n × n partial
matrix A under which there is a unique way to complete it to a Euclidean distance squared
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(EDS) matrix, i.e., a matrix of the form (‖xi−xj‖2)1≤i,j≤n for some x1, . . . , xn ∈ Rk. In this

paper, we give a complete answer to this problem. It turns out that the desired uniqueness
condition can be determined by the existence of a positive semi-definite matrix satisfying
certain linear constraints. Such a condition can be checked by existing computer software
such as the semi-definite programming routines; see [7, 8].

Our paper is organized as follows. In Section 2, we first obtain a necessary and sufficient
condition for an n×n partial matrix A to have a unique positive semi-definite completion. We
then use the result to deduce the conditions for the uniqueness of the EDS matrix completion
and the contractive matrix completion problem. (Recall that a matrix is contractive if its

operator norm is at most one.) Furthermore, we describe an algorithm to check the conditions
in our results, and how to use existing software to check the conditions numerically. In Section
3, we illustrate our results by several numerical examples. In Section 4, we show that some
results in [1] are not accurate. Discrepancies in the proofs in [1] are explained.

In our discussion, we denote by Sn the space of n × n symmetric matrices, EDSn the
set of n× n EDS matrices, and PDn (respectively, PSDn) the set of positive (semi-)definite

matrices in Sn. The standard inner product on Sn is defined by (X,Y ) = tr (XY ). The

standard basis of Rn will be denoted by {e1, . . . , en} and we let e = e1 + · · ·+ en.

2 Uniqueness of completion problems

We consider problems in the following general settings.

Let M be a matrix space, and S a subspace of M. Suppose P is a subset of M with certain
desirable properties. Given A ∈M, we would like to determine X ∈ S so that

A + X ∈ P .

In particular, we are interested in the condition for the uniqueness of X ∈ S such that
A + X ∈ P. We will always assume that there is an X0 ∈ S such that A + X0 ∈ P, and
study the condition under which X0 is the only matrix in S satisfying A + X0 ∈ P . We can
always assume that X0 = 0 by replacing A by A + X0.

To recover the completion problem, suppose a partial matrix is given. Let A be an
arbitrary completion of the partial matrix, say, set all unspecified entries to 0. Let S be
the space of matrices with zero entries at the specified entries of the given partial matrix.
Suppose P is a subset of M with the desired property such as being invertible, having a
specific rank, being positive semi-definite, etc. Then completing the partial matrix to a
matrix in P is the same as finding X ∈ S such that A + X ∈ P .

We begin with the following result concerning the uniqueness of the positive semi-definite
completion problem.

Proposition 2.1 Let A ∈ PSDn, and S be a subspace of Sn. Suppose V is orthogonal

such that V tAV = diag (d1, . . . , dr, 0, . . . , 0), where d1 ≥ · · · ≥ dr > 0. If P ∈ S satisfies
A + P ∈ PSDn, then

X = V tPV =
[
X11 X12

X21 X22

]
(1)

2



with
X22 ∈ PSDn−r and rank (X22) = rank ([X21 X22]). (2)

Conversely, if there is a P ∈ S such that (1) and (2) hold then there is ε > 0 such that

A + δP ∈ PSDn for all δ ∈ [0, ε].

Remark 2.2 Note that in Proposition 2.1 one needs only find an orthogonal matrix V such

that V tAV = D ⊕ 0 for a positive definite matrix D, i.e., the last n− r columns of V form
an orthonormal basis for the kernel of A. The statement and the proof of the result will still
be valid.

Proof of Proposition 2.1. Suppose A + P ∈ PSDn. Let X = V tPV be partitioned as in
(1). We have X22 ∈ PSDn−r because[

D + X11 X12

X21 X22

]
∈ PSDn with D = diag (d1, . . . , dr).

Let W be orthogonal such that W tX22W = diag (c1, . . . , cs, 0, . . . , 0) with c1 ≥ · · · ≥ cs > 0.

If W̃ = Ir ⊕W , then

W̃ tV t(A + P )V W̃ =
[
D + X11 Y12

Y21 W tX22W

]
.

Since A + P ∈ PSDn, we see that only the first s rows of Y21 can be nonzero. Thus,

rank ([X21 X22]) = rank ([Y21 W tX22W ]) = s = rank (X22).

Conversely, suppose there is a P ∈ S such that (1) and (2) hold. Then for sufficiently
large η > 0, ηD + X11 is positive definite. Moreover, if

T =
[
Ir −(ηD + X11)

−1X12

0 In−r

]
,

then
T tV t(ηA + X)V T = (ηD + X11)⊕ [X22 −X21(ηD + X11)

−1X12].

Since rank ([X21 X22]) = rank (X22), for sufficiently large η > 0 we have

X22 −X21(ηD/2)−1X12 ∈ PSDn−r and (ηD/2)−1 − (ηD + X11)
−1 ∈ PDr.

Hence, under the positive semi-definite ordering �, we have

X22 −X21(ηD + X11)
−1X12 � X22 −X21(ηD/2)−1X12 � 0n−r.

Thus, for sufficiently large η, we have A + P/η ∈ PSDn. 2

By Proposition 2.1, the zero matrix is the only element P in S such that A + P ∈ PSDn

if and only if the zero matrix is the only element X in S such that V tXV = (Xij)1≤i,j≤2

with X22 ∈ PSDn−r and rank (X22) = rank ([X21 X22]). This condition can be checked by
the following algorithm.
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Algorithm 2.3 Let S be a subspace of Sn, and A ∈ PSDn.

Step 1 Construct a basis {X1, . . . , Xk} for S.

Step 2 Determine the dimension l of the space

S̃ =
{
[ X21 X22 ] : V tXV =

[
X11 X12

X21 X22

]
with X ∈ S

}
.

If k > l, then there is a nonzero P ∈ S such that V tPV = P1⊕ 0n−r and A+P ∈ PSDn and
so the completion is not unique. Otherwise, go to Step 3.

Step 3 Determine whether there are real numbers a0, a1, . . . , ak such that

Q = a0A + a1X1 + · · ·+ akXk ∈ PSDn

with (0r ⊕ In−r, V
tQV ) = 1.

If such a matrix Q exists, then there is a nonzero P ∈ S such that A + P ∈ PSDn.
Otherwise, we can conclude that 0n is the only matrix P in S such that A + P ∈ PSDn.

(Note that numerically Step 3 can be checked by existing software such as semi-definite

programming routines.)

Explanation of the algorithm
Note that in Step 2, the condition k > l holds if and only if there is a nonzero matrix

P ∈ S such that V tPV = P1 ⊕ 0n−r and A + P ∈ PSDn. To see this, let V = [V1|V2] such
that V1 is n× r. Then

S̃ = {V t
2 XV : X ∈ S}

and {V t
2 X1V, . . . , V t

2 XkV } is a spanning set of S̃.

If k > l, then there is a nonzero real vector (a1, . . . , ak) such that a1V
t
2 X1V + · · · +

akV
t
2 XkV = 0n−r,n. Since X1, . . . , Xk are linearly independent, P = a1X1 + · · · + akXk is

nonzero. Clearly, X = V tPV has the form X11 ⊕ On−r. By Proposition 2.1, there is δ > 0
such that A + δP ∈ PSDn.

Conversely, if there is a nonzero matrix P ∈ S such that V tPV = P1⊕0n−r and A+P ∈
PSDn, then there is a nonzero real vector (a1, . . . , ak) such that P = a1X1 + · · · + akXk so

that a1V
t
2 X1V + · · ·+ akV

t
2 XkV = 0n−r,n. Hence, S̃ has dimension less than k.

So, if k = l, and if there is a nonzero P ∈ S such that A+P ∈ PSDn, then V t
2 PV cannot

be zero. By Proposition 2.1, V t
2 PV2 is nonzero, and Step 3 will detect such a matrix P if it

exists.

By Proposition 2.1 and its proof, we have the following corollary.

Corollary 2.4 Suppose S ⊆ Sn, A ∈ PSDn, and the orthogonal matrix V satisfy the hy-
potheses of Proposition 2.1.

(a) If A ∈ PDn, then for any P ∈ S and sufficiently small δ > 0, we have A + δP ∈ PDn.
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(b) If there is a P ∈ S such that the matrix X22 in (1) is positive definite, then A + δP ∈
PDn for sufficiently small δ > 0.

Remark 2.5 To use condition (b) in Corollary 2.4, one can focus on the matrix space

T = {V t
2 PV2 : P ∈ S} ⊆ Sn−r,

where V2 is obtained from V by removing its first r columns. Note that PDm is the interior
of PSDm, and PSDm is a self-dual cone, i.e.,

PSDm = {Y ∈ Sm : (Y, Z) ≥ 0 for all Z ∈ PDm}.

By the theorem of alternative (e.g., see [6]), T ∩ PDn−r 6= ∅ if and only if

T ⊥ ∩ PSDn−r = 0. (3)

One can use standard semi-definite programming routines to check condition (3).

Here is another consequence of Proposition 2.1.

Corollary 2.6 Suppose S ⊆ Sn, A ∈ PSDn, rank (A) = n− 1 and the orthogonal matrix V
satisfy the hypotheses of Proposition 2.1 If S has dimension larger than n− 1, then there is
a P ∈ S such that A + δP ∈ PSDn for all sufficiently small δ > 0.

Proof. If there is a P ∈ S such that V PV t has nonzero (n, n) entry, we may assume
that it is positive; otherwise replace P by −P . Then by Proposition 2.1 A + δP ∈ PSDn for

sufficiently small δ > 0. Suppose V PV t always has zero entry at the (n, n) position. Since

S has dimension at least n, there exists a nonzero P ∈ S such that the last column of V PV t

are zero. So, A + δP ∈ PSDn for sufficiently small δ > 0. 2

Next, we use Proposition 2.1 to answer the question raised in [1].

Proposition 2.7 Let S0
n be the subspace of matrices in Sn with all diagonal entries equal to

zero. Let A ∈ EDSn, and S be a subspace of S0
n. Then there is an n× (n− 1) matrix U such

that U te = 0, U tU = In−1, and −U tAU = diag (d1, . . . , dr, 0, . . . , 0), where d1 ≥ · · · ≥ dr > 0.
Moreover, there is a nonzero matrix P ∈ S such that A + P ∈ EDSn if and only if there is
nonzero matrix P ∈ S such that

X = U tPU =
[
X11 X12

X21 X22

]
(4)

with X22 ∈ PSDn−1−r and rank (X22) = rank ([X21 X22]).

Proof. By the result in [4], for any n × (n − 1) matrix W such that W tW = In−1, the

mapping X 7→ −1
2
W tXW is a linear isomorphism from S0

n to Sn−1 such that the cone EDSn

is mapped onto PSDn−1. Since −1
2
W tAW is positive semi-definite, there is an (n−1)×(n−1)
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orthogonal matrix V such that −1
2
V tW tAWV = diag (d1, . . . , dr, 0, . . . , 0), where d1 ≥ · · · ≥

dr > 0. Evidently, U = WV satisfies the asserted condition.
Now, the existence of a nonzero P ∈ S such that A + P ∈ EDSn is equivalent to the

existence of a nonzero X ∈ {−1
2
U tPU : P ∈ S} such that −1

2
U tAU + X ∈ PSDn−1. One

can apply Proposition 2.1 to get the conclusion. 2

Using Corollaries 2.4 and 2.6, we have the following corollary concerning unique EDS
matrix completion. Part (a) in the following was also observed in [1, Theorem 3.1].

Corollary 2.8 Use the notations in Proposition 2.7.

(a) If U tAU has rank n − 1, then for any P ∈ S and sufficiently small δ > 0, we have
A + δP ∈ EDSn

(b) If there is a P ∈ S such that the matrix X22 in (4) is positive definite, then A + δP ∈
EDSn for sufficiently small δ > 0.

(c) If rank (U tAU) = n− 2 and S has dimension larger than n− 2, then there is a P ∈ S
such that A + δP ∈ EDSn for all sufficiently small δ > 0.

Note that Proposition 2.1 is also valid for the real space Hn of n× n complex Hermitian
matrices. Moreover, our techniques can be applied to other completion problems on the
space Mm,n of m × n complex matrices that can be formulated in terms of positive semi-

definite matrices. For instance, for any B ∈ Mm,n, the operator norm ‖B‖ ≤ 1 if and only

if [
Im B
B∗ In

]
∈ PSDm+n.

As a result, if S̃ is a subspace of Mm,n, and Ã ∈ Mm,n such that ‖Ã‖ ≤ 1, we can let

A =
[
Im Ã
Ã∗ In

]
∈ PSDm+n,

and S be the subspace of Hm+n consisting of matrices of the form

P =
[
0m P̃
P̃ ∗ 0n

]

with P̃ ∈ S̃. Then there is a P̃ ∈ S̃ such that ‖Ã + P̃‖ ≤ 1 if and only if there is a P ∈ S
such that A+P ∈ PSDm+n. We can then apply Proposition 2.1 to determine the uniqueness
condition.

3 Numerical examples

We illustrate how to use our results and algorithm in the previous section in the following.
We begin with the positive semi-definite matrix completion problem in the general setting.
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Example 3.1 Let

A1 = I6 ⊕ [0], A2 = I5 ⊕ 02, A3 = I4 ⊕ 03 and A4 = I3 ⊕ 04.

Let b = 1/
√

2 and S = span {X1, X2, X3, X4} where

X1 =



−1 0 −1 0 −1 −b b
0 1 0 1 0 b b

−1 0 −1 0 −1 −b b
0 1 0 1 0 b b

−1 0 −1 0 −1 −b b
−b b −b b −b 0 1

b b b b b 1 0


, X2 =



−1 −1 0 0 −1 −b −b
−1 −1 0 0 −1 −b −b

0 0 1 1 0 b −b
0 0 1 1 0 b −b

−1 −1 0 0 −1 −b −b
−b −b b b −b 0 −1
−b −b −b −b −b −1 0



X3 =



−1 1 0 0 −1 b b
1 −1 0 0 1 −b −b
0 0 1 −1 0 b −b
0 0 −1 1 0 −b b

−1 1 0 0 −1 b b
b −b b −b b 0 −1
b −b −b b b −1 0


, X4 =



−1 0 1 0 −1 b −b
0 1 0 −1 0 b b
1 0 −1 0 1 −b b
0 −1 0 1 0 −b −b

−1 0 1 0 −1 b −b
b b −b −b b 0 1

−b b b −b −b 1 0


.

Then for A1, A2, A3, there exists a nonzero P ∈ S such that Ai + δP ∈ PSD7 for sufficiently
small δ > 0. For A4, the zero matrix is the unique element P in S such that A4 + P is
positive semi-definite.

To see the above conclusion, we use the algorithm in the last section. Clearly, we can let
V = I7 be the orthogonal matrix in the algorithm.

Suppose A = A1. Applying Step 2 of the algorithm with V2 = [e7], we see that k =

dimS = 4 > 2 = dim{V t
2 Xj : j = 1, 2, 3, 4}. So, there is non-zero P ∈ S such that

A + δP ∈ PSD7 for sufficiently small δ > 0. In fact, if P is a linear combination of X1 + X2

and X3 + X4, then for sufficiently small δ > 0, A + δP ∈ PSD7.

Suppose A = A2. Applying Step 2 of the algorithm with V2 = [e6 | e7], we see that

k = dimS = 4 and since V t
2 (X1 + X2 + X3 + X4) = 0, k > dim{V t

2 Xj : j = 1, 2, 3, 4}. So,

there is non-zero P ∈ S such that A + δP ∈ PSD7 for sufficiently small δ > 0. In fact, this
is true for δ ∈ [−1/4, 1/8] and

P =
4∑

i=1

Xi =



−4 0 0 0 −4 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 4 0 0 0

−4 0 0 0 −4 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


. (5)
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Suppose A = A3. Applying Step 2 of the algorithm with V2 = [e5 | e6 | e7], we see that

k = l = 4; we proceed to step 3. If P is defined as in (5), Q = αA − 1
4
P ∈ PSD7 where

α ≥ 1. Thus, we get the desired conclusion on A3.
Note that one can also use standard semi-definite programming packages to draw our

conclusion in Step 3. To do that we consider the following optimization problem:

Minimize / Maximize (C, Q) subject to (Bi, Q) = bi and Q ∈ PSDn.

Since we are interested only in feasibility, we can set C to be the zero matrix. To ensure
that Q = a0A+ a1X1 + · · ·+ a4X4 ∈ PSDn, we set the matrices {Bi}, for i = 1, . . . ,m, to be

a basis of (S ∪ {A})⊥ in S7 and set bi = 0. Then set Bm+1 = 04⊕ I3 with bm+1 = 1. We will
get the desired conclusion by running any standard semi-definite programming package.

Suppose A = A4 ∈ PSD7. Applying Step 2 of the algorithm with V2 = [e4 | e5 | e6 | e7],
we see that k = l = 4; we proceed to step 3. Since I4 is orthogonal to all matrices in

S̃ = span {V t
2 XjV2 : j = 1, . . . , 4}, we see that I4 ∈ S̃⊥∩PD4. By the theorem of alternative,

S̃ ∩ PSD4 = {04}. Thus, there is no matrix Q satisfying Step 3, and 07 is the only element
P in S such that A4 + P ∈ PSD7.

Actually, to get the conclusion on A4 one can also check directly that the matrix Q in
Step 3 of the algorithm does not exist by a straightforward verification or using standard
semi-definite programming routines.

We can use Example 3.1 to get examples for the EDS matrix completion problem in the
following. Denote by {E11, E12, . . . , Enn} the standard basis for n× n real matrices.

Example 3.2 Let A1, A2, A3, A4, X1, X2, X3, X4 be defined as in Example 3.1. Suppose

Ã1, Ã2, Ã3, Ã4 ∈ EDS8 are such that

−1

2
U tÃjU = Aj, j = 1, 2, 3, 4,

where

U =
1√
8



−1 1 −1 1 −1 0
√

2

1 −1 −1 1 1 −
√

2 0

1 1 1 1 1
√

2 0

−1 −1 1 1 −1 0 −
√

2

1 1 1 −1 −1 −
√

2 0

1 −1 −1 −1 −1
√

2 0

−1 1 −1 −1 1 0 −
√

2

−1 −1 1 −1 1 0
√

2


.

Note that the matrices Ã1, . . . , Ã4 are determined uniquely by the result in [4]. Let S =

span {E12 + E21, E13 + E31, E24 + E42, E34 + E43}. Then

−1

2
U t(E13 + E31)U =

−1

8
X1,

−1

2
U t(E34 + E43)U =

−1

8
X2,
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−1

2
U t(E12 + E21)U =

−1

8
X3,

−1

2
U t(E24 + E42)U =

−1

8
X4.

By Proposition 2.7 and Example 3.1, we see that there exists a nonzero P ∈ S such that

Ãj +P ∈ EDS8 for j = 1, 2, 3, and 08 is the unique element P in S such that Ã4 +P ∈ EDS8.

4 Comparison with the results of Alfakih

We reformulate Example 3.2 in the standard Euclidean distance squared completion problem
setting and show that some results in [1] are incorrect in the following.

Continue to assume that A1, A2, A3, A4, X1, X2, X3, X4 are defined as in Example 3.1.

Let Ã0 be the partially specified matrix

Ã0 =



0 ? ? 1 7/4 7/4 1 2
? 0 2 ? 2 2 7/4 7/4
? 2 0 ? 2 2 7/4 7/4
1 ? ? 0 7/4 7/4 2 1

7/4 2 2 7/4 0 2 7/4 7/4
7/4 2 2 7/4 2 0 7/4 7/4
1 7/4 7/4 2 7/4 7/4 0 1
2 7/4 7/4 1 7/4 7/4 1 0


.

We can complete Ã0 to Ã1 by setting all unspecified entries to 7/4. So, we have −1
2

U tÃ1U =

A1. If P is a linear combination of E13 + E31 + E34 + E43 and E12 + E21 + E24 + E42, then

Ã1 + δP ∈ EDS8 for sufficiently small δ > 0.
Let

Y =



0 1/4 1/4 1 1/4 1/4 1 0
1/4 0 0 1/4 0 0 1/4 1/4
1/4 0 0 1/4 0 0 1/4 1/4
1 1/4 1/4 0 1/4 1/4 0 1

1/4 0 0 1/4 0 0 1/4 1/4
1/4 0 0 1/4 0 0 1/4 1/4
1 1/4 1/4 0 1/4 1/4 0 1
0 1/4 1/4 1 1/4 1/4 1 0


.

Then −U tY U/2 = 06 ⊕ [1]. Furthermore, for any X ∈ S, we have (U tXU)77 = 0 and hence

(U tY U, U tXU) = 0. So, [1, Theorem 3.3(2.a)] asserts that Ã1 is a unique completion of Ã0,
which is not true by Example 3.2.

For easy comparison, we note that in the notation of [1], r = n− 1− rank (A1) = 1 and

the Gale matrix corresponding to Ã1 is

Zt =
[

z1 z2 z3 z4 z5 z6 z7 z8
]

=
[

1 0 0 −1 0 0 −1 1
]
.

If Ψ = [1] then for (i, j) ∈ {(1, 2), (1, 3), (2, 4), (3, 4)} such that the entries (Ã0)i,j are free,

we have zt
iΨzj = 0, and thus [1, Theorem 3.3 (2.a)] applies.
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The construction of our example does not depend on the degeneracy that r = 1. We

can use a similar technique to construct an example for r = 2. Let Y ∈ S0
8 be such that

−1
2
U tY U = 05 ⊕ I2 and let B be a partial matrix that completes to Ã2 with free entries in

the same position as free entries of Ã0. As (U tY U, U tXU) = 0 for any X ∈ S, [1, Theorem

3.3(2.b)] asserts that Ã2 is a unique completion of B, but this contradicts Example 3.2 which
shows that the positive semi-definite completions of A2 is not unique.

Again, for easy comparison we note that in the notation of [1], r = 2 and

Zt =
[

z1 z2 z3 z4 z5 z6 z7 z8
]

=

[
1 0 0 −1 0 0 −1 1
0 −1 1 0 −1 1 0 0

]

is the Gale matrix for Ã2. Let Ψ = I2 and for (i, j) ∈ {(1, 2), (1, 3), (2, 4), (3, 4)}, the entries

(B)i,j are free. One readily checks that for these pair, zt
iΨzj = 0.

Discrepancies in the proofs of Alfakih
The flaw in [1, Theorem 3.3] lies in the proof of Theorem 3.2 (Corollary 4.1) in the paper.

Following the notation in [1, p. 8], we let

L =
{
−U tXU/2 : X ∈ S

}
, L⊥ = {X ∈ Sn−1 : (X,Z) = 0 for all Z ∈ L} ,

K =
{
B ∈ Sn−1 : B = λ

(
X +

1

2
U tÃ0U

)
, λ ≥ 0, X ∈ PSDn−1

}
and

int (K◦) = {C ∈ Sn−1 : (C, B) < 0 for all B ∈ K} .

The author of [1] claimed that: if there exists some Y ∈ PDn−1−r such that

Ŷ =
[
0 0
0 Y

]
∈ L⊥, (6)

then

L⊥ ∩ int(K◦) 6= ∅, (7)

and hence L ∩ cl(K) = {0} by the theorem of alternative. However, in Example 3.2, in

spite of the existence of Ŷ ∈ L⊥ of the form (6) one can check that (7) does not hold. In

particular, Ŷ 6∈ int(K◦) because Ir ⊕ 0n−1−r ∈ K but (Ŷ , Ir ⊕ 0n−1−r) = 0.
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