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Abstract

Given two chains of subspaces in Cn, we study the set of unitary matrices that
map the subspaces in the first chain onto the corresponding subspaces in the second
chain, and minimize the value ‖U− In‖ for various unitarily invariant norms ‖ · ‖
on Cn×n. In particular, we give formula for the minimum value ‖U − In‖, and
describe the set of all the unitary matrices in the set attaining the minimum, for
the Frobenius norm. For other unitarily invariant norms, we obtain the results if
the subspaces have special structure. Several related matrix minimization problems
are also considered.
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1 Introduction

Let

{0}
6=
⊂M1 6=

⊂M2 6=
⊂ . . .

6=
⊂M` 6=

⊂Cn and {0}
6=
⊂N1 6=

⊂N2 6=
⊂ . . .

6=
⊂N` 6=

⊂Cn (1.1)

be two chains of nonzero proper subspaces in Cn, the complex vector space of n-component
column vectors, with

dim Mj = dim Nj = rj (j = 1, . . . , `). (1.2)

It is easily seen that there exists a unitary matrix U on Cn such that

UMj = Nj (j = 1, . . . , `). (1.3)

In this paper we consider the problem of minimizing the deviation of U from the identity
transformation, i.e., minimizing of the value ‖U−In‖ on the set of unitary transformations
satisfying (1.3), for unitarily invariant norms ‖ · ‖ on Cn×n, the complex vector space of
n × n matrices. Recall that a norm ‖ · ‖ on Cm×n is called unitarily invariant if the
equality ‖UAV ‖ = ‖A‖ holds for every A ∈ Cm×n and every choice of unitary matrices
U ∈ Cm×m, V ∈ Cn×n.
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Problem 1.1 Given two chains (1.1) of subspaces in Cn and given a unitarily invariant
norm ‖ · ‖ on Cn×n, compute the value

min{‖U− I‖ : U is unitary and UMj = Nj for j = 1, . . . , `}, (1.4)

find a unitary matrix Umin for which the minimum in (1.4) is attained, and describe the
set of all such matrices Umin.

Let x1, . . . , xr`
and y1, . . . , yr`

be two orthonormal sets of vectors in Cn such that

Span {x1, . . . , xrj
} = Mj and Span {y1, . . . , yrj

} = Nj, j = 1, . . . , `. (1.5)

(Here and elsewhere in the paper we denote by Span {z1, . . . , zm} the subspace spanned
by the vectors z1, . . . , zm.) Clearly, a unitary matrix U satisfies (1.3) if and only if U
maps Span {xrj−1+1, . . . , xrj

} onto Span {yrj−1+1, . . . , yrj
}, for j = 1, . . . , ` (we set r0 = 0).

In fact, by the above observation, we can formulate Problem 1.1 entirely in matrix lan-
guage as follows. Let X and Y be unitary matrices with columns x1, . . . , xn and y1, . . . , yn,
respectively, i.e., the last n− r` columns of X (respectively, Y ) span the orthogonal com-
plement ofM` (repectively, N`). Then clearly the unitary matrix U = Y X∗ satisfies (1.3).
Furthermore, it is easy to show that a unitary U satisfies (1.3) if and only if U = Y V X∗,
where

V = V1 ⊕ · · · ⊕ V` ⊕ V`+1, (1.6)

where Vj are (rj − rj−1)× (rj − rj−1) unitary matrices for j = 1, . . . , `, ` + 1 with r0 = 0
and r`+1 = n. Let S be the set of unitary matrices in block form as V above. Then
Problem 1.1 can be restated as finding

min
V ∈S

‖Y V X∗ − I‖ = min
V ∈S

‖Y ∗(Y V X∗)X − Y ∗X‖ = min
V ∈S

‖Y ∗X − V ‖ (1.7)

and characterizing the matrices V ∈ S for which the minimum is attained.

A particular case (corresponding to ` = 1) of Problem 1.1 appears in guidance control;
see [3], where a complete solution of this particular case for real matrices and the Frobe-
nius norm is given. More generally, several cases of Problem 1.1, and of closely related
problems have been studied in the literature (see, for example, [5], [6, Section 4]). In
turn, Problem 1.1 belongs to a large class of extremal problems in matrix analysis, many
of which have been studied extensively in connection with numerical algorithms (see, e.g.,
[10], [7], and references there), statistics (see Chapter 10 in [13]), semidefinite program-
ming, etc.

Besides the introduction, the paper consists of three sections. In Section 2, we present
some preliminary results on unitarily invariant norms. The main result here, Theorem 2.3,
characterizes the minimizers of the distance between a given positive semidefinite matrix
and the unitary group, for strictly increasing Schur convex unitarily invariant norms. We
address Problem 1.1 in its matrix formulation in Section 3. We show (cf. Theorem 3.1)
that if there exist U, V ∈ S such that UAV is a block matrix with some nice properties,
then one can easily determine V ∈ S satisfying (1.7), and the corresponding optimal
value ‖Y V X∗− I‖. When ` = 1, the most convenient approach is to reduce Y V X∗ to its
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CS-decomposition, i.e., finding X, Y ∈ S so that

Y V X∗ =


C 0 −S 0
0 Ip 0 0
S 0 C 0
0 0 0 Iq

 , (1.8)

where C and S are k×k nonnegative diagonal matrices satisfying C2+S2 = Ik, and p+q+
2k = n. If ` > 2, we generally do not have the nice canonical form. Nevertheless, we can
still study Problem 1.1 in the operator context with the help of the CS decomposition as
shown in Section 4. Here, for the Frobenius norm, we describe completely the minimizers
of the distortion problem 1.1 in terms of the CS decomposition of the matrices X and Y
(Theorem 4.2); for unitarily invariant norms that are not scalar multiples of the Frobenius
norm, we have a less complete result (Theorem 4.5).

Although we formulate and prove our results for complex vector spaces and matrices
only, the results and their proofs remain valid also in the context of real vector spaces
and matrices.

We shall denote by σ1(A) ≥ · · · ≥ σn(A) the singular values of a matrix A ∈ Cn×n.
Unitarily invariant norms ‖ · ‖Φ on Cn×n are associated with symmetric gauge functions
φ in a standard fashion, so that

‖A‖Φ = φ (σ1(A), σ2(A), . . . , σn(A))

for every A ∈ Cn×n; see, e.g., [13], [9] for background and basic results on this association.
The size n will be fixed throughout the paper, and the unitarily invariant norms are
considered on the algebra Cn×n of n× n complex matrices. The Schatten p-norms are

‖A‖p =

 ∞∑
j=1

(σj(A))p

1/p

, 1 ≤ p < ∞, ‖A‖∞ = σ1(A) (the operator norm).

The Schatten 2-norm is known as the Frobenius norm:

‖A‖2 =

 n∑
i,j=1

|ai,j|2
1/2

,

where ai,j are the entries of A. If X ∈ Cn×n is Hermitian, λ(X) = (λ1(X), . . . , λn(X))
will denote the vector of eigenvalues of X, where λ1(X) ≥ · · · ≥ λn(X). At stands for
the transpose of a matrix A. The block diagonal matrix with diagonal blocks A1, . . . , Ap

(in that order) is denoted diag (A1, . . . , Ap), or A1 ⊕ A2 ⊕ . . .⊕ Ap. We use the notation
Σ(A) = diag (σ1(A), . . . , σn(A)) for the n× n diagonal matrix with the singular values of
A (in the non-increasing order) on the main diagonal. Denote by {E11, E12, . . . , Enn} the
standard basis for Cn×n.

2 Unitarily invariant norms

In this section we present some results on unitarily invariant norms that are needed for
solution of Problem 1.1. A unitarily invariant norm ‖ · ‖ is a called a Q-norm if there is
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a unitarily invariant norm ‖ · ‖Φ, which will be called the associated norm of ‖ · ‖, such
that ‖A‖2 = ‖A∗A‖Φ for every A ∈ Cn×n. For example, the Schatten p-norm ‖ · ‖p is a
Q-norm if and only if 2 ≤ p ≤ ∞ because ‖A‖2

p = ‖A∗A‖p/2; we refer to [4, Chapter 4]
for more information on Q-norms.

A unitarily invariant norm ‖ · ‖Φ is called strictly convex if the unit ball with respect to
that norm is strictly convex: If A 6= B satisfy

‖A‖Φ = ‖B‖Φ = 1,

then
‖tA + (1− t)B‖Φ < 1 for 0 < t < 1.

For example, a Schatten p-norm is strictly convex if and only if 1 < p < ∞. We need the
following property of strictly convex norms:

Proposition 2.1 Let ‖ · ‖Φ be a unitarily invariant norm which is strictly convex. If
A, B ∈ Cn×n are such that

‖A‖ ≤ ‖B‖ for every unitarily invariant norm, (2.1)

and ‖A‖Φ = ‖B‖Φ, then σj(A) = σj(B) for j = 1, 2, . . ..

We will use the well-known fact that (2.1) holds if and only if ‖A‖K,k ≤ ‖B‖K,k, k =
1, 2, . . ., where ‖ · ‖K,k denotes the k-th Ky Fan norm, i.e., the sum of k largest singular
values of A.

Proof. Let D1 = diag (σ1(A), . . . , σn(A)) and D2 = diag (σ1(B), . . . , σn(B)). Since
‖A‖K,k ≤ ‖B‖K,k for all k = 1, . . . , n, [16, Corollary 5],

D1 =
m∑

i=1

tiUiPiD2P
t
i ,

where for i = 1, . . . ,m, Ui is a diagonal unitary matrix, Pi is a permutation matrix, ti > 0,
such that t1 + · · ·+ tm = 1. But then,

‖A‖Φ = ‖D1‖Φ ≤
m∑

i=1

ti‖UiPiD2P
t
i ‖Φ = ‖B‖Φ.

By the strict convexity, all UiPiD2P
t
i are equal, and hence must be equal to D1. Thus,

D1 = D2 as asserted.

In connection with Proposition 2.1 note that there exist non-strictly convex unitarily
invariant norms that have the property described in Proposition 2.1, as the following
example shows:

Example 2.2 Define

‖A‖c =
n∑

j=1

(n− j + 1)σj(A) =
n∑

j=1

j∑
i=1

σi(A), A ∈ Cn×n.

If ‖A‖ ≤ ‖B‖ for every unitarily invariant norm ‖ · ‖ and if ‖A‖c = ‖B‖c, then we have

k∑
j=1

σj(A) ≤
k∑

j=1

σj(B), k = 1, 2, . . . , n,
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and
n∑

j=1

j∑
i=1

σi(A) =
n∑

j=1

j∑
i=1

σi(B),

which imply
k∑

j=1

σj(A) =
k∑

j=1

σj(B), k = 1, 2, . . . , n,

i.e., σj(A) = σj(B), for j = 1, 2, . . . , n. On the other hand, ‖ · ‖c is not strictly convex; for
example,

‖rI + sE11‖c = r‖I‖c + s‖E11‖c for every r, s > 0.

In the sequel we will use the property of strictly convex norms that is described in Propo-
sition 2.1. By the result in [13, Chapter 3, A6-A8], it follows that the symmetric gauge
function φ that corresponds to the unitarily invariant norm ‖·‖Φ on Cn×n is strictly Schur
convex and strictly increasing if and only if for every pair of n×n matrices A and B such
that ‖A‖ ≤ ‖B‖ for every unitarily invariant norm ‖ · ‖ and ‖A‖Φ = ‖B‖Φ, we actually
have σj(A) = σj(B) for j = 1, 2, · · · . For simplicity, we shall call such a unitarily invariant
norm strictly increasing Schur convex.

Theorem 2.3 Let ‖ · ‖Φ be a strictly increasing Schur convex unitarily invariant norm
on Cn×n. Then, for a given positive semidefinite P , we have ‖P − I‖Φ ≤ ‖P − U‖Φ for
every unitary U ; the equality ‖P − I‖Φ = ‖P − U‖Φ holds if and only if the unitary U is
such that Ux = x for every x ∈ Range P .

The result of Theorem 2.3 is known for positive definite P [8] (see [2] for generalizations
to infinite dimensional operators, with Schatten p-norms).

The proof of Theorem 2.3 is based on the following lemma.

Lemma 2.4 Let P ∈ Cn×n be positive semidefinite. Then a unitary matrix U has the
property that P −U has singular values |σ1(P )− 1|, . . . , |σn(P )− 1| if and only if Ux = x
for every x ∈ Range P .

Proof: The result is obviousely true for P = 0n×n. Assume that P 6= 0 and prove the
statement by induction. The statement is clear when n = 1. Suppose the result is true

for matrices of sizes up to n − 1 with n > 1. For X ∈ Cn×n, let X̃ =

[
0 X

X∗ 0

]
, and

let C = P −U . Then P̃ and C̃ have eigenvalues ±σj(P ) and ±|σj(P )− 1| (j = 1, . . . , n),
respectively. Now, we have

C̃ = P̃ + (−Ũ).

Note that (i) σ1(C) = σ1(P )−1, or (ii) σ1(C) = 1−σn(P ). Thus, λ1(C̃) = λr(P̃ )+λs(−Ũ)
with

(r, s) =
{

(1, 2n) if (i) holds,
(n + 1, n) if (ii) holds.

By [12, Theorem 3.1], there is a unit vector x̃ ∈ C2n such that

C̃x̃ = λ1(C̃)x̃, P̃ x̃ = λr(P̃ )x̃, and − Ũ x̃ = λs(−Ũ)x̃.
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If (i) holds, then the eigenvectors of P̃ corresponding to λr(P̃ ) = σ1(P ) are of the form

1√
2

[
x
x

]
for some unit eigenvector x ∈ Cn of λ1(P ). Since C̃x̃ = λ1(C̃)x̃ and Ũ x̃ =

λs(Ũ)x̃, if X is a unitary matrix with x as the first column, then

X∗CX = [σ1(C)]⊕ C1, X∗PX = [σ1(P )]⊕ P1, X∗UX = [1]⊕ U1.

If (ii) holds, then the eigenvectors of P̃ corresponding to λr(P̃ ) = −σn(P ) is of the

form 1√
2

[
x
−x

]
for some unit eigenvector x ∈ Cn of λn(P ). Since C̃x̃ = λ1(C̃)x̃ and

Ũ x̃ = λs(Ũ)x̃, if X is a unitary matrix with x as the first column, then

X∗CX = [σ1(C)]⊕ C1, X∗PX = [−σn(P )]⊕ P1, X∗UX = [−1]⊕ U1.

In both cases, one can then apply induction assumption on the matrices C1 = P1−U1 to
get the conclusion.

Proof of Theorem 2.3. Suppose P is positive semidefinite. Then for any unitary U ,
we have (see [8])

(|σ1(P )− 1|, . . . , |σn(P )− 1|) ≺w σ(P − U),

where σ(P −U) is the vector of singular values of P −U , and ≺w is the weak majorization
relation (see, e.g., [13] for this relation and its properties). It follows that

‖P − I‖Φ = φ(|σ1(P )− 1|, . . . , |σn(P )− 1|) ≤ φ(σ(P − U)) = ‖P − U‖Φ.

Since φ is strictly increasing Schur convex, the equality holds if and only if P − U has
singular values |σ1(P )− 1|, . . . , |σn(P )− 1|. Now, the result follows from Lemma 2.4.

If we omit the hypothesis that ‖ · ‖Φ is strictly increasing Schur convex in Theorem 2.3,
then the result of that theorem is no longer valid. However, omitting the hypothesis of
strict increasing Schur convexity of ‖ · ‖Φ and simultaneously omitting “and only if” will
produce a correct statement. In other words, the set of best approximants may only
become larger if ‖ · ‖Φ is not assumed to be strictly increasing Schur convex. The proof
of this statement is easily obtained using a continuity argument and the fact that the set
of strictly increasing Schur convex symmetric gauge functions is dense in the set of all
symmetric gauge functions.

Note that there can be a much larger set of minimizers if the unitarily invariant norm is
not strictly Schur convex and strictly increasing. For example, if P = diag (3, 1, . . . , 1)
then 2 = ‖P − I‖∞ = ‖P − U‖∞ for any unitary U = [1]⊕ U1.

Next, we mention several simple optimization results which will be used later.

Lemma 2.5 Let A ∈ Cn×n have singular values σ1(A) ≥ σ2(A) ≥ . . . ≥ σn(A) ≥ 0 and
let

A = PU = V Σ(A)W (P ≥ 0, UU∗ = V V ∗ = In),

where W = V ∗U , be its polar and singular values decompositions. Then, for every uni-
tarily invariant norm,

min
X unitary

‖In − AX‖ = ‖In − Σ(A)‖ = ‖In − P‖ (2.2)
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and the minimum is attained for X = U∗ = W ∗V ∗. Moreover, if ‖ · ‖ is strictly increasing
Schur convex, then

‖In − AX‖ = ‖In − P‖

for a unitary matrix X if and only if Xx = U∗x for every x ∈ Range A.

Proof: For every unitary matrix X, it follows that Σ(AX) = Σ(A) and therefore, by the
inequality ‖A−B‖ ≥ ‖Σ(A)− Σ(B)‖ (see, e. g., [11, Theorem 7.4.51]), we have

‖In − AX‖ ≥ ‖In − Σ(AX)‖ = ‖In − Σ(A)‖.

The equality is attained for X = W ∗V ∗, since the norm is unitarily invariant. The second
equality in (2.2) follows because P = Ũ∗Σ(A)Ũ for some unitary Ũ . For the second part
of the lemma, observe that

‖I − AX‖ = ‖I − PUX‖ = ‖X∗U∗ − P‖ and Range A = Range P,

and apply Theorem 2.3.

Lemma 2.6 For every matrix A ∈ Cn×n, for every pair of orthogonal projections P, Q ∈
Cn×n and for every unitarily invariant norm ‖ · ‖ on Cn×n,

‖A‖ ≥ ‖PAQ‖. (2.3)

Moreover, if ‖ · ‖ is the Frobenius norm, then ‖A‖2 > ‖PAQ‖2, unless (I−P )A+PA(I−
Q) = 0.

Proof: Let U, V ∈ Cn×n be unitary such that U∗PU = Ir ⊕ 0n−r and V ∗QV = Is⊕ 0n−s.
Then one readily checks that

‖A‖ = ‖UAV ∗‖ ≥ ‖(Ir ⊕ 0n−r)UAV ∗(Is ⊕ 0n−s)‖ = ‖PAQ‖.

The second assertion is clear from the above calculation.

Lemma 2.7 Let At and Bs be two families of n×m and n× k matrices, respectively. If

min
t
‖At‖2 = ‖At0‖2 and min

s
‖Bs‖2 = ‖Bs0‖2,

then
min
t,s
‖ [At, Bs] ‖2 = ‖ [At0 , Bs0 ] ‖2.

Proof: By the definition of the Frobenius norm ‖ [At, Bs] ‖2
2 = ‖At‖2

2 + ‖Bs‖2
2, which

implies immediately the desired result.
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3 Results in the matrix formulation

In this section, we describe solutions of the problem (1.7) for Q-norms and the Frobenius
norm. We shall let A = Y X∗ in (1.7), and let q = ` + 1 in the following discussion. Also,
we shall continue to use S = S(r1, . . . , rq) to represent the set of unitary matrices of the
form

U = U1 ⊕ · · · ⊕ Uq, U1 ⊕ · · · ⊕ Ur ∈ Crj×rj .

Note that
min
U∈S

‖A− U‖ = min
U,V,W∈S

‖V AW − U‖

for any unitarily invariant norm ‖ · ‖. Thus, we can always replace A by V AW with
V, W ∈ S to determine the minimum norm, and Ũ is a minimizer for

min
U∈S

‖A− U‖

if and only if V ŨW is a mimimizer for

min
U∈S

‖V AW − U‖.

We first present the following result on Q-norms.

Theorem 3.1 Let ‖ · ‖ be a Q-norm, i.e., there is a unitarily invariant norm ‖ · ‖Φ such
that ‖A‖2 = ‖A∗A‖Φ for every A ∈ Cn×n, and let A be an n× n unitary matrix. Suppose
there exist

V = V1 ⊕ · · · ⊕ Vq and W = W1 ⊕ · · · ⊕Wq ∈ S
with V AW = [Ai,j]

q
i,j=1 such that the matrices Ai,i ∈ C(ri−ri−1)×(ri−ri−1) are positive

semidefinite for i = 1, . . . , q, and Ai,j = −(Aj,i)
∗ for i 6= j. Then

‖V AW − I‖ = ‖A− V ∗W ∗‖ ≤ ‖A− U‖ for all U ∈ S.

Moreover, Ũ = Ũ1 ⊕ · · · ⊕ Ũq ∈ S satisfies the equality

‖A− Ũ‖ = ‖A− V ∗W ∗‖ (3.1)

for some Q-norm ‖ · ‖ whose associate norm is strictly increasing Schur convex if and
only if

VjŨjWjx = x for every x ∈ Range Aj,j, j = 1, . . . , q. (3.2)

As mentioned in the introduction (cf. formula (1.8)), the hypothesis on existence of V ∈ S
and W ∈ S with the indicated properties is always satisfied when q = 2.

Proof: Without loss of generality, we may assume that V = W = I, otherwise, we may
replace A by V AW . Also, we may assume that Ai,i are diagonal, and thus A = A1 + iA2,
where A1 = diag (t1, . . . , tn) and A2 are Hermitian. Let U = U1 ⊕ · · · ⊕ Uq ∈ S. Then

(A− U)∗(A− U) = 2I − (A∗U + U∗A) and (A− I)∗(A− I) = 2I − (A + A∗).

We claim that

m∑
j=1

σj((A− I)∗(A− I)) ≤
m∑

j=1

σj((A− U)∗(A− U)), m = 1, . . . , n, (3.3)
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or equivalently, that

n∑
j=m

λj(A + A∗) ≥
n∑

j=m

λj(A
∗U + U∗A), m = 1, . . . , n.

Suppose U = X + iY so that X and Y are Hermitian. Then the vector of diagonal entries
of the matrix A∗U + U∗A equals to that of A1X + XA1, i.e., to 2(d1t1, . . . , dntn), where
d1 . . . , dn are the diagonal entries of X and satisfy |dj| ≤ 1 for all j. For a fixed r, let
1 ≤ i1 < · · · < ir ≤ n be the indices so that ti1 , . . . , tir are the r smallest diagonal entries
of A1. Set

P =
r∑

j=1

Eij ,ij . (3.4)

Since |dij | ≤ 1, we see that (the first inequality below follows by the interlacing properties
of eigenvalues of a Hermitian matrix and of its principal submatrix, whereas the last
equality is valid since the matrix A + A∗ is diagonal)

n∑
k=n−r+1

λk(A
∗U + U∗A) ≤ trace (P (A∗X + X∗A)P )

= 2
r∑

i=1

dij tij ≤ 2
r∑

i=1

tij = trace (P (A + A∗)P ) =
n∑

k=n−r+1

λk(A + A∗),

which proves (3.3). We obtain that ‖(A − I)∗(A − I)‖ ≤ ‖(A − U)∗(A − U)‖ for every
unitarily invariant norm ‖ · ‖. Consequently, ‖|A− I‖| ≤ ‖|A−U‖| for every Q-norm ‖| · ‖|.

Now, suppose Ũ ∈ S and
‖|A− I‖| = ‖|A− Ũ‖|

for some Q-norm ‖| ·‖| whose associate norm ‖·‖ is strictly increasing Schur convex. Thus,

‖(A− I)∗(A− I)‖ = ‖
(
A− Ũ

)∗ (
A− Ũ

)
‖ (3.5)

and thus the singular values of (A− I)∗(A− I) coincide with those of
(
A− Ũ

)∗ (
A− Ũ

)
.

Therefore,
λj(A + A∗) = λj(A

∗Ũ + Ũ∗A), j = 1, 2, . . . n.

Using the notation introduced in the first part of the proof, we have

n∑
j=1

tj = trace A1 = trace (A∗
1X + X∗A1) =

n∑
j=1

djtj.

Therefore, dj = 1 for every j for which tj > 0. This condition is easily seen to be
equivalent to (3.2).

We give explicit formulas for the Schatten norms for 2 × 2 real matrices A of the form
described in Theorem 3.1.

Lemma 3.2 Let a ≥ 0, b be real numbers such that a2 + b2 = 1. Then

min

∥∥∥∥∥
[

a− t −b
b a− r

]∥∥∥∥∥
p

=

∥∥∥∥∥
[

a− 1 −b
b a− 1

]∥∥∥∥∥
p

= 21/p
√

2− 2a, 2 ≤ p ≤ ∞, (3.6)
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where the minimum is taken over the set of (ordered) pairs {t, r}, t, r ∈ C, such that
|t| = |r| = 1.
Moreover, if a > 0, the minimum in (3.6) is achieved only for t = r = 1, whereas if a = 0
and p > 2, the minimum in (3.6) is achieved precisely for those pairs {t, r} (|t| = |r| = 1)

for which t = r. If a = 0 and p = 2, then

∥∥∥∥∥
[
−t −1
1 −r

]∥∥∥∥∥
2

has constant value 2.

Proof: A calculation shows that the singular values of the matrix

A =

[
a− t −b

b a− r

]

are
√

2− aRe t− aRe r ±√q, where q = (aRe t−aRe r)2 + b2|t− r|2. So we have to prove

that

(2− aRe t− aRe r +
√

q)p/2 + (2− aRe t− aRe r −√q)p/2 ≥ 2(2− 2a)p/2 (3.7)

if p ≥ 2 and |t| = |r| = 1. Treating u =
√

q as an independent variable, we need only to
prove that

(2− aRe t− aRe r + u)p/2 + (2− aRe t− aRe r − u)p/2 ≥ 2(2− 2a)p/2 (3.8)

for p ≥ 2, |t| = |r| = 1, and 0 ≤ u ≤ 2 − aRe r − aRe t. The inequality (3.8) is valid for
u = 0, and the derivative with respect to u of the left hand side of (3.8) is positive for
u > 0 (here the hypothesis p ≥ 2 is used). Thus, (3.8) is proved. An examination of the
proof of (3.6) shows that the equality in (3.8) is achieved only in the situations indicated
in Lemma 3.2.

Lemma 3.2 (applied with a = 0) shows in particular, that the condition (3.2) is generally
not sufficient to guarantee the equality in (3.1).

The result of Lemma 3.2 fails for 1 ≤ p < 2. More precisely:

Lemma 3.3 Let 1 ≤ p < 2. Then

min

∥∥∥∥∥
[
−t −1
1 −r

]∥∥∥∥∥
p

= 2p, (3.9)

where the minimum is taken over the set of pairs {t, r}, t, r ∈ C, such that |t| = |r| = 1.
Moreover, the minimum in (3.9) is achieved precisely for those pairs {t, r} for which
t = −r.

The proof is elementary and relies on the explicit formulas for the singular values of the

matrix

[
−t −1
1 −r

]
obtained in the proof of Lemma 3.2.

In particular, Lemma 3.3 shows that Theorem 3.1 is generally false for unitarily invariant
norms that are not Q-norms.

For the Frobenius norm, we have the following general result.
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Theorem 3.4 Let A be an n × n unitary matrix partitioned as a q × q block matrix
A = [Ai,j]

q
i,j=1, where Ai,i ∈ C(ri−ri−1)×(ri−ri−1), and let W = W1 ⊕ · · · ⊕ Wq ∈ S (as

defined in the paragraph following the statement of Problem 1.1), be such that Ai,iW
∗
i is

positive semidefinite. Then

2n−
q∑

j=1

trace(AiiW
∗
i ) = 2n−

q∑
j=1

trace
√

AiiA∗
ii = ‖A−W‖2

2 (3.10)

and
‖A−W‖2 ≤ ‖A− U‖2 for all U ∈ S. (3.11)

Moreover, Ũ = Ũ1 ⊕ · · · ⊕ Ũq ∈ S satisfies the equality

‖A−W‖2 = ‖A− Ũ‖2 (3.12)

if and only if

ŨjW
∗
j x = x for every x ∈ Range Aj,jW

∗
j , j = 1, . . . , q. (3.13)

Proof: The proof of the first part follows the same pattern as the proof of Theorem 3.1,
except that (3.3) needs to be proven only for m = n, and therefore we take P = I in
(3.4).

For the second part, in view of Theorem 3.1, we need only to show that if (3.12) holds for
some unitary matrices Ũ = Ũ1 ⊕ · · · ⊕ Ũq ∈ S, then (3.13) holds. To this end notice that

‖A− Ũ‖2
2 = ‖(A1,1 − Ũ1)⊕ . . .⊕ (Aq,q − Ũq)‖2

2 +
∑
j 6=k

‖Aj,k‖2

=
q∑

j=1

‖Aj,j − Ũj‖2
2 +

∑
j 6=k

‖Aj,k‖2
2,

and therefore, the proof reduces to showing that, for a fixed j, ‖Aj,j − Ũj‖2 = ‖Aj,j −
Wj‖2 as soon as the unitary matrix Ũj has the property that ŨjW

∗
j x = x for every

x ∈ Range Aj,jW
∗
j . But every such unitary matrix UjW

∗
j decomposes into the orthog-

onal sum UjW
∗
j = Xj ⊕ Yj with respect to the orthogonal decomposition Crj−rj−1 =

Range AjjW
∗
j ⊕Ker AjjW

∗
j , and the equality ‖Aj,j − Ũj‖2 = ‖Aj,j −Wj‖2 is obvious.

The result of Theorem 3.4 does not hold for all Q-norms, as the following example (pro-
duced by Matlab) shows.

Example 3.5 Let

Q =

 0.4104 −0.5789− 0.2985i −0.5773 + 0.2722i
−0.1678 + 0.7165i 0.2186 −0.0369 + 0.6397i
−0.5337 + 0.0721i −0.5740− 0.4455i 0.4266

 .

The matrix Q is unitary (up to Matlab precision), and Q− I has singular values 1.9328,
0.3665, 0.1367. On the other hand, let

E =

 1 0 0
0 −0.9999 + 0.0150i 0
0 0 0.4749− 0.8800i

 .

Then E is unitary (up to Matlab precision), and the singular values of Q−E are 1.6706,
1.5250, 0.3076. Thus, ‖Q− I‖∞ > ‖Q− E‖∞.
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4 Cosine-sine decomposition approach

In this section we treat Problem 1.1 in the operator form, using the cosine-sine decompo-
sitions as the main tools. Although in principle the operator formulation of Problem 1.1
is equivalent to the matrix formulation which was dealt with in Section 3, the cosine-sine
decompositions allow us to obtain the main result in a more detailed geometric form (us-
ing canonical angles between subspaces).

We recall these decompositions of partitioned unitary matrices.

Theorem 4.1 Let X, Y ∈ Cn×r be two isometric matrices: X∗X = Y ∗Y = Ir. Then:

1. If 2r ≤ n, there exist unitary matrices Q ∈ Cn×n and V , W ∈ Cr×r such that

QXW =
r
r
n− 2r

 Ir

0
0

 , QY V =
r
r
n− 2r

 Γ
∆
0

 , (4.1)

where
Γ = diag (γ1, . . . , γr) and ∆ = diag (δ1, . . . , δr) (4.2)

satisfy

0 ≤ γ1 ≤ . . . ≤ γr, δ1 ≥ . . . ≥ δr ≥ 0, γ2
j + δ2

j = 1 (j = 1, . . . , r). (4.3)

2. If 2r > n, then Q, V and W ∈ Cr×r can be chosen so that

QXW =
n− r
2r − n
n− r

 In−r 0
0 I2r−n

0 0

 , QY V =
n− r
2r − n
n− r

 Γ 0
0 I2r−n

∆ 0

 , (4.4)

where
Γ = diag (γ1, . . . , γn−r) and ∆ = diag (δ1, . . . , δn−r) (4.5)

satisfy

0 ≤ γ1 ≤ . . . ≤ γn−r, δ1 ≥ . . . ≥ δn−r ≥ 0, γ2
j +δ2

j = 1 (j = 1, . . . , n−r).
(4.6)

The proof (see e.g., [15]) relies on the CS (cosine-sine) decomposition of a partitioned
unitary matrix which in turn, was introduced in [6] and [14]. See also [10] and [7], where
the CS decomposition is used in the context of numerical algorithms and geometry of
subspaces. Since γj and δj satisfy γ2

j + δ2
j = 1, they can be regarded as cosines and sines

of certain angles θj: γj = cos θj, δj = sin θj, which are called the canonical angles between
subspaces M = Range X` and N = Range Y` (see e.g., [1]). Note also the equalities

X∗Y = WΓV ∗ (2r ≤ n) and X∗Y = W

[
Γ 0
0 I2r−n

]
V ∗ (2r > n), (4.7)

which follow from (4.1) and (4.4), respectively, and present in fact the singular value
decomposition of the matrix X∗Y .
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Consider the chains of subspaces (1.1) and (1.2) It is clear from (1.1) and (1.2) that

0 = r0 < r1 < r2 < · · · < r` = r < n.

Let x1, . . . , xr`
and y1, . . . , yr`

be two orthonormal sets of vectors in Cn such that

{x1, . . . , xrj
} and {y1, . . . , yrj

}

form bases of Mj and Nj, respectively. Let

Xj =
[
xrj+1 xrj+2 . . . xrj+1

]
and Yj =

[
yrj+1 yrj+2 . . . yrj+1

]
(j = 0, . . . , `)

be the n × (rj+1 − rj) matrices with orthonormal columns which span the subspaces
Mj+1 	Mj and Nj+1 	Nj, respectively. Then a unitary matrix U satisfies (1.3) if and
only if

UXj = YjDj for some unitary matrix Dj ∈ C(rj+1−rj)×(rj+1−rj) (j = 1, . . . , `). (4.8)

Introducing the matrices

X = [X1 X2 . . . X`] and Y = [Y1 Y2 . . . Y`] , (4.9)

we rewrite (4.8) as
UX = Y D for D = diag (D1, . . . , D`). (4.10)

The set of all unitary matrices U satisfying (4.10) we denote by U . We formulate first
our result for the Frobenius norm.

Theorem 4.2 Let X, Y ∈ Cn×r be two isometric matrices of the form (4.9) with CS
decompositions (4.1) − (4.3) (for 2r ≤ n) or (4.4) − (4.6) (for 2r > n) with unitary
matrices Q, V and W . Let

X∗
j Yj = PjZj (Pj ≥ 0, ZjZ

∗
j = Z∗

j Zj = Irj+1−rj
) (4.11)

be the polar decompositions of matrices X∗
j Yj. Then

min
U∈U

‖U− In‖2
2 = 4r − 2trace

(√
X∗Y Y ∗X

)
− 2

∑̀
i=1

trace
(√

X∗
j YjY ∗

j Xj

)
. (4.12)

Moreover, a matrix Umin ∈ U is a minimizer for the unitary distortion problem, i.e., it
satisfies

min
U∈U

‖U− In‖2 = ‖Umin − In‖2 (4.13)

if and only if it is of the form

Umin = Q∗

 ΓT −∆R 0
∆T ΓR 0
0 0 In−2r

 Q, (4.14)

if 2r ≤ n and

Umin = Q∗

 Γ 0 −∆
0 I2r−n 0
∆ 0 Γ

 [
T 0
0 R

]
Q, (4.15)

13



if 2r > n, where R is an arbitrary r×r (if 2r ≤ n) or (n−r)× (n−r) (if 2r > n) unitary
matrix such that

Rx = x for every x ∈ Range Γ (4.16)

and T is an r × r matrix of the form

T = V ∗diag (D1, . . . , D`)W, (4.17)

where Dj ∈ C(rj+1−rj)×(rj+1−rj) are arbitrary unitary matrices such that

Djx = Z∗
j x for every x ∈ Range Pj (j = 1, . . . , `). (4.18)

It is interesting to compare this result and Theorem 3.4, in which X∗
i Yj = Aij for 1 ≤

i, j ≤ ` = q − 1. The formula (4.12) is the same as (3.10) because

n− trace
√

X∗
q YqY ∗

q Xq = 2r − trace
(√

X∗Y Y ∗X
)

is just the dimension of the space spanned by the columns of X and Y .
We establish two lemmas to prove Theorem 4.2.

Lemma 4.3 Let Γ and ∆ be positive semidefinite matrices such that Γ2 + ∆2 = I, and
let T ∈ Cr×r be a unitary matrix. Then the matrix

V =

[
ΓT U1

∆T U2

]
. (4.19)

is unitary if and only if U1 = −∆R and U2 = ΓR for some unitary matrix R ∈ Cr×r.

Proof: The “if” part is clear. For the “only if” part, observe that

W =

[
Γ ∆
−∆ Γ

]
and WV =

[
T S
0 R

]

are unitary, and hence S = 0. It follows that

V = W ∗(T ⊕R) =

[
ΓT −∆R
∆T ΓR

]

as asserted.

Lemma 4.4 Under the hypotheses and notation of Theorem 4.2, let D denote the set of all
block diagonal unitary matrices D = diag (D1, . . . , D`) with the blocks Dj ∈ C(rj+1−rj)×(rj+1−rj)

for j = 1, . . . , `. Then

‖Ir −X∗Y D‖2 = min
D∈D

‖Ir −X∗Y D‖2 (4.20)

(i.e., D minimizes the value of ‖Ir−X∗Y D‖2 over the set D) if and only if the blocks Dj

satisfy conditions (4.18).
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Proof: In view of the block decompositions (4.9) and (4.10) of X, Y and D,

Ir −X∗Y D =
[
δijIrj+1−rj

−X∗
i YjDj

]`

i,j=1
, (4.21)

where δij is the Kronecker symbol. Decomposing the last matrix as

Ir −X∗Y D = [A1(D1), . . . , A`(D`)] , Aj(D`) ∈ Cn×(rj+1−rj), (4.22)

we conclude by Lemma 2.7 that the minimum on the right hand side of (4.20) is attained
for a unitary matrix D = diag (D1, . . . , D`) if and only if its blocks Dj’s are minimizers
for

‖Aj(Dj)‖2 = min
Dj unitary

‖Aj(Dj)‖2 (j = 1, . . . , `). (4.23)

Comparing (4.22) and (4.21) and taking into account that the Frobenius norm is unitarily
invariant, we get

‖Aj(Dj)‖2 =

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥



−X∗
1YjDj
...

−X∗
j−1YjDj

I −X∗
j YjDj

−X∗
j+1YjDj

...
−X∗

` YjDj



∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
2

=

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥



−X∗
1Yj
...

−X∗
j−1Yj

D∗
j −X∗

j Yj

−X∗
j+1Yj
...

−X∗
` Yj



∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
2

.

Only the j-th block in the latter expression depends on Dj and therefore, again by Lemma
2.7, the extremal matrix Dj in (4.23) has to satisfy

‖D∗
j −X∗

j Yj‖2 = min
Dj unitary

‖D∗
j −X∗

j Yj‖2 = min
Dj unitary

‖I −X∗
j YjDj‖2.

Making use of the polar decompositions (4.11), we obtain

‖I −X∗
j YjDj‖2 = ‖I − PjZjDj‖2 = ‖D∗

jZ
∗
j − Pj‖2 = ‖Pj − ZjDj‖2

and by Theorem 2.3, we conclude that Dj minimizes the value of ‖I −X∗
j YjDj‖2 if and

only if ZjDjx = x for every vector x ∈ Range Pj. It follows now by Lemma 2.7, that
D = diag (D1, . . . , D`) satisfies (4.20) if and only if

ZjDjx = x for every x ∈ Range Pj (j = 1, . . . , `).

Since Zj’s are unitary, the latter conditions are equivalent to (4.18).

Proof of Theorem 4.2:
The case 2r ≤ n. Making use of representations (4.1) we rewrite (4.10) as

QUQ∗QXW = QY V V ∗DW (4.24)

and get, in view of (4.1),

QUQ∗

 Ir

0
0

 =

 Γ
∆
0

 T, where T = V ∗diag (D1, . . . , D`)W. (4.25)
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We regard T as a function of unitary matrices D1, . . . , D`, with V and W fixed. Thus,
QUQ∗ necessarily has the form

QUQ∗ =

 ΓT U12 U13

∆T U22 U23

0 U32 U33

 .

Since we are minimizing the value of ‖U− In‖2 = ‖QUQ∗ − I‖2, upon applying Lemma

2.6 to the matrices A = QUQ∗ − In and P =

[
I2r 0
0 0

]
, we conclude that the minimal

value of ‖U− I‖2 is attained only for unitary matrices U of the form

U = Q∗

 ΓT U12 0
∆T U22 0
0 0 In−2r

 Q.

By Lemma 4.3, U12 = −∆R and U22 = ΓR for some unitary matrix R ∈ Cr×r and thus,

U = Q∗

 ΓT −∆R 0
∆T ΓR 0
0 0 In−2r

 Q, (4.26)

which provides the representation formula (4.14) for minimizers. It remains to show that
U of the form (4.26) is a minimizer if and only if the matrices T and R are subjects to
(4.16)–(4.18). Since the norm is unitarily invariant and since Q, T and R are unitary, it
follows by (4.26), that

min
D1,...,D`,R

‖U−In‖2 = min
D1,...,D`,R

∥∥∥∥∥
[

ΓT − Ir −∆R
∆T ΓR− Ir

]∥∥∥∥∥
2

= min
D1,...,D`,R

∥∥∥∥∥
[

Γ− T ∗ −∆
∆ Γ−R∗

]∥∥∥∥∥
2

.

(4.27)
By Lemma 2.7, it remains to find separately unitary matrices D1, . . . , D` and R which
minimize the values of ‖Γ− T ∗‖2 and ‖Γ−R∗‖2. By Theorem 2.3,

‖Γ−R∗‖2 = min
R unitary

‖Γ−R∗‖2

if and only if R∗x = x for every vector x ∈ Range Γ. Since R is unitary, this condition is
equivalent to (4.16). On the other hand, in view of (4.25) and the first relation in (4.7)
and since the norm is unitarily invariant,

‖Γ−T ∗‖2 = ‖Ir−ΓT‖2 = ‖Ir−ΓV ∗DW‖2 = ‖Ir−WΓV ∗D‖2 = ‖Ir−X∗Y D‖2. (4.28)

and by Lemma 4.4, a matrix T of the form (4.17) minimizes ‖Γ− T ∗‖2 if and only if the
matrices Dj are subject to (4.18).

The case 2r > n. Making use of representation (4.4) and of equality (4.24), we get, in
view of (4.10),

QUQ∗

 In−r 0
0 I2r−n

0 0

 =

 Γ 0
0 I2r−n

∆ 0

 T, where T = V ∗diag (D1, . . . , D`)W. (4.29)
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Thus, QUQ∗ necessarily has the form

QUQ∗ =

 Γ 0 U13

0 I2r−n 0
∆ 0 U33

 [
T 0
0 In−r

]
.

By Lemma 4.3, U13 = −∆R and U33 = ΓR for some unitary matrix R ∈ C(n−r)×(n−r) and
thus,

U = Q∗

 Γ 0 −∆
0 I2r−n 0
∆ 0 Γ

 [
T 0
0 R

]
Q, (4.30)

which leads to the representation formula (4.15). As in the case 2r ≤ n, we have to
minimize

‖U− In‖ =

∥∥∥∥∥∥∥


[
Γ 0
0 I2r−n

]
− T ∗ −∆

0
∆ 0 Γ−R∗


∥∥∥∥∥∥∥
2

(4.31)

or equivalently (by Lemma 2.7), to minimize

‖Γ−R∗‖2 and

∥∥∥∥∥
[

Γ 0
0 I2r−n

]
− T ∗

∥∥∥∥∥
2

by the appropriate choice of T (of the form (4.29), where D1, . . . , D` are unitary) and
unitary R. As in the case 2r ≤ n, for U of the form (4.30) to be a minimizer, R has to
satisfy (4.16). Furthermore, in view of (4.29) and the second relation in (4.7),∥∥∥∥∥

[
Γ 0
0 I2r−n

]
− T ∗

∥∥∥∥∥
2

=

∥∥∥∥∥Ir −
[

Γ 0
0 I2r−n

]
T

∥∥∥∥∥
2

=

∥∥∥∥∥Ir −
[

Γ 0
0 I2r−n

]
V ∗DW

∥∥∥∥∥
2

=

∥∥∥∥∥Ir −W

[
Γ 0
0 I2r−n

]
V ∗D

∥∥∥∥∥
2

= ‖Ir −X∗Y D‖2 , (4.32)

and by Lemma 4.4, a matrix T of the form (4.17) minimizes ‖Γ− T ∗‖2 if and only if the
matrices Dj are satisfy (4.18).

Finally, to compute explicitly the minimal value of ‖U − I‖2, where U ∈ U , we chose a
special minimizer corresponding to

R =

{
Ir, if 2r ≤ n
In−r, if 2r > n

, D◦ = diag (Z∗
1 , . . . , Z

∗
` ) and T = V ∗D◦W.

Let 0 ≤ γ1 ≤ γ2 ≤ . . . ≤ γr be the singular values of the matrix X∗Y (i.e., γi are
the cosines of canonical angles between subspaces M and N ), let matrices Γ and ∆ be
defined by (4.2), (4.3) (for 2r ≤ n) or by (4.5), (4.6) (for 2r > n) and let (4.7) be the
polar decomposition of the matrix X∗Y . Then for 2r ≤ n, we get from (4.27) and (4.28)

min
U∈U

‖U− In‖2
2

= ‖Γ− T ∗‖2
2 + 2‖∆‖2

2 + ‖Γ−R∗‖2
2

= ‖Ir −X∗Y D◦‖2
2 + 2‖∆‖2

2 + ‖Γ− Ir‖2
2

= trace
{
(Ir − (D◦)∗Y ∗X)(Ir −X∗Y D◦) + 2∆2 + (Γ− Ir)

2
}

(4.33)

= trace
{
2Ir −X∗Y D◦ − (D◦)∗Y ∗X + (D◦)∗Y ∗XX∗Y D◦ + 2∆2 + Γ2 − 2Γ

}
.
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Since D◦, V and W are unitary, it follows from (4.7) that

trace {(D◦)∗Y ∗XX∗Y D◦} = trace {(D◦)∗V ΓW ∗WΓV D◦} = trace Γ2,

and since Γ is positive semidefinite, we have also

trace Γ = trace
√

X∗Y Y ∗X.

Furthermore, in view of (4.11),

trace (X∗Y D◦) =
∑̀
j=1

trace
(
X∗

j YjZ
∗
j

)
=

∑̀
j=1

trace Pj =
∑̀
i=1

trace
(√

X∗
j YjY ∗

j Xj

)
.

Substituting the three last equalities into (4.33) and taking into account that Γ2+∆2 = Ir,
we get (4.12). If 2r > n, then we get from (4.31) and (4.32)

‖U− In‖2
2 = ‖

[
Γ 0
0 I2r−n

]
− T ∗‖2

2 + 2‖∆‖2
2 + ‖Γ−R∗‖2

2

= ‖Ir −X∗Y D◦‖2
2 + 2‖∆‖2

2 + ‖Γ− In−r‖2
2

and using the preceding arguments we come again to (4.12).

Recall that the positive semidefinite square root
√

A of a positive semidefinite matrix A
is a real analytic function of the real and imaginary parts of the entries of A, provided
that the rank of A remains constant; this follows from the functional calculus formula

√
A =

1

2πi

∫
|λ|=ε

(λI − A)−1dλ +
∫
Γ

√
λ(λI − A)−1dλ.

Here ε > 0 is such that that the positive semidefinite matrix A has no nonzero eigenvalues
inside the circle |λ| = ε, and Γ is a suitable contour that surrounds the nonzero part of
the spectrum of A. Using the analyticity of the square root, one obtains from (4.12)
that minU∈U ‖U− In‖2

2 is a real analytic function of the real and imaginary parts of the
components of the vectors xj and yj, as long as the numbers `, r1, . . . , r` and the ranks
of the matrices X∗

j Yj (j = 1, . . . , `) and of X∗Y are kept constant.

For norms other than scalar multiples of the Frobenius norm, the proof of Theorem 4.2
breaks down. The reason is that Lemma 2.7 is valid only for unitarily invariant norms that
are scalar multiples of the Frobenius norm. Indeed, let ‖ · ‖Φ be such a unitarily invariant
norm, and Let φ be the corresponding symmetric gauge function on IRn

+, the convex cone
of real vectors with n nonnegative components. We may assume that φ(1, 0, . . . , 0) = 1 by

a suitable normalization. By assumption, φ 6= l2, where l2(x1, . . . , xn) =
√

x2
1 + . . . + x2

n,
xj ≥ 0 is the symmetric gauge function corresponding ot the Frobenius norm. Then there
exists 1 ≤ k < n such that φ(x) = l2(x) for all x ∈ IRn

+ with at most k nonzero entries,
but φ(y) 6= l2(y), for a certain y = (y1, . . . , yk+1, 0, . . . , 0) ∈ IRn

+ with y1 ≥ · · · ≥ yk+1 > 0.
Consider the family F1 of n×n matrices with exactly k nonzero singular values y1, . . . , yk,
and the family F2 of n × n matrices with the only nonzero singular value yk+1. We see
that A0 = y1E11 + · · ·+ ykEkk is a minimizer of ‖ · ‖Φ in F1, and B0 = yk+1Ek+1,k+1 and
B̃0 = yk+1E11 are are both minimizers of ‖ · ‖Φ in F2. But then

‖[A0 B0]‖Φ = φ(y1, . . . , yk+1, 0, . . . , 0) 6= l2(y1, . . . , yk+1, 0, . . . , 0)

= l2(
√

y2
1 + y2

k+1, y2, . . . , yk, 0, . . . , 0) = φ(
√

y2
1 + y2

k+1, y2, . . . , yk, 0, . . . , 0)

= ‖[A0 B̃0]‖Φ.
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So, [A0 B0] and [A0 B̃0] cannot be both minimizers of ‖ · ‖Φ in the set of n× 2n matrices
{[A B] : A ∈ F1, B ∈ F2}.

In view of the observation made in the preceding paragraph, we need an additional hy-
pothesis to deal with norms other than scalar multiples of the Frobenius norm. For
Q-norms we have the following result (recall that U is the set of all unitary matrices U
satisfying (4.10)).

Theorem 4.5 Let X, Y ∈ Cn×r be two isometric matrices of the form (4.9) with CS
decompositions (4.1) − (4.3) (for 2r ≤ n) or (4.4) − (4.6) (for 2r > n) with unitary
matrices Q, V and W . Assume further that the matrix V W ∗ is block diagonal: V W ∗ =
diag (W1, . . . ,W`), where Wj is rj × rj (j = 1, . . . , `). Then for any Q-norm,

min
U∈U

‖U− In‖ =

∥∥∥∥∥
[

Γ− I −∆
∆ Γ− I

]∥∥∥∥∥ . (4.34)

The proof proceeds similarly to that of Theorem 4.2. We omit the details. It is worth
noting that the above theorem can be viewed as a special case of Theorem 3.1 when there
exist V, W ∈ S so that up to a permutation V AW is of the form[

Γ −∆
∆ Γ

]
⊕ I2m,

(using the notation of Theorem 3.1). One can translate the conclusion on the minimizers
in Theorem 3.1 as well.
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